Projects per year
Organisation profile
Organisation profile
Taiwan is currently lagging behind in the development of key materials for Green Energy Technology. In Taiwan, material manufacturers and materials, in addition to lithium iron phosphate, have fallen far behind international peers. The global market share of key materials is only about 1%, resulting in China's middle and lower reaches of the green energy technology industry has long relied on foreign imports of raw materials. The mass production-oriented manufacturing industry is not only low in gross profit, but also faces the threat of mass production in mainland China, affecting the development of China's terminal green energy technology application, hindering smart grid and green. The policy of energy is being promoted. Therefore, upgrading the “key material autonomy rate” is a technical dilemma that needs to be improved.
Hierarchical Materials, as the name suggests, refers to materials that have multiple dimensions at the same time. This kind of thinking is a very important concept to push new materials to the application side. Throughout the development of traditional materials, whether it is metal, ceramics, or polymer materials, its evolution is nothing more than material development at a single scale - from the evolution of classical giant blocks to the modern nanoscale, at different scales The materials each have their own special properties. However, the finished products of new materials that are truly marketable (or influential) often need to combine various properties at different scales to match each other to be competitive enough. In fact, there are many examples of cross-dimensional materials in nature. For example, human blood vessels, the largest diameter can reach several centimeters, and the smallest diameter is only a few micrometers. Only through a red blood cell can it be textured. Complete the body fluid and oxygen exchange of all organs and cells in the body. The development of key green energy materials requires innovative research and development of “cross-dimensional green energy materials”. For example, in lithium batteries, the positive and negative electrode materials and the separator in the electrolyte are all cross-scale “cross-dimensional”. Materials, etc. Due to the complexity of "cross-dimensional materials" and the importance of its application in green energy technology, research on cross-dimensional green energy materials needs to integrate research methods and thinking at different scales, which is still rare in China.
Fingerprint
Dive into the research topics where Hierarchical Green-Energy Materials Research Center is active. These topic labels come from the works of this organisation's members. Together they form a unique fingerprint.
Collaborations and top research areas from the last five years
Recent external collaboration on country/territory level. Dive into details by clicking on the dots or
Profiles
Projects
- 4 Finished
-
Carbon-coated nonstoichiometric TiOx for application of Li-ion battery anodes in fast charging-in situ XRD study
Wang, J. S., Liao, G. B., Chong, Z., Ho, C. H., Huang, P. C., Huang, J. L., Chang, C. C., Sahu, D. R. & Shen, Y. M., 2025 Jul 1, In: Journal of Electroanalytical Chemistry. 988, 119127.Research output: Contribution to journal › Article › peer-review
-
Crystal Structure Evolution of Piezoelectric Fe-Doped ZnO Film by Magnetron Co-Sputtering Technique
Cheng, Y. C., Sanjaya, B., Wu, S., Huang, J. L. & Lee, A. C. H., 2025 Mar, In: Condensed Matter. 10, 1, 6.Research output: Contribution to journal › Article › peer-review
Open Access -
Electrochemical etching of the CuIn0.7Ga0.3Se2 absorber films prepared by non-vacuum process
Hsiang, H. I., Lin, H. Y., Brahma, S. & Shen, Y. M., 2025 Jan 5, In: Journal of Alloys and Compounds. 1010, 177995.Research output: Contribution to journal › Article › peer-review