Projects per year
Organisation profile
Organisation profile
Taiwan is currently lagging behind in the development of key materials for Green Energy Technology. In Taiwan, material manufacturers and materials, in addition to lithium iron phosphate, have fallen far behind international peers. The global market share of key materials is only about 1%, resulting in China's middle and lower reaches of the green energy technology industry has long relied on foreign imports of raw materials. The mass production-oriented manufacturing industry is not only low in gross profit, but also faces the threat of mass production in mainland China, affecting the development of China's terminal green energy technology application, hindering smart grid and green. The policy of energy is being promoted. Therefore, upgrading the “key material autonomy rate” is a technical dilemma that needs to be improved.
Hierarchical Materials, as the name suggests, refers to materials that have multiple dimensions at the same time. This kind of thinking is a very important concept to push new materials to the application side. Throughout the development of traditional materials, whether it is metal, ceramics, or polymer materials, its evolution is nothing more than material development at a single scale - from the evolution of classical giant blocks to the modern nanoscale, at different scales The materials each have their own special properties. However, the finished products of new materials that are truly marketable (or influential) often need to combine various properties at different scales to match each other to be competitive enough. In fact, there are many examples of cross-dimensional materials in nature. For example, human blood vessels, the largest diameter can reach several centimeters, and the smallest diameter is only a few micrometers. Only through a red blood cell can it be textured. Complete the body fluid and oxygen exchange of all organs and cells in the body. The development of key green energy materials requires innovative research and development of “cross-dimensional green energy materials”. For example, in lithium batteries, the positive and negative electrode materials and the separator in the electrolyte are all cross-scale “cross-dimensional”. Materials, etc. Due to the complexity of "cross-dimensional materials" and the importance of its application in green energy technology, research on cross-dimensional green energy materials needs to integrate research methods and thinking at different scales, which is still rare in China.
Fingerprint
Dive into the research topics where Hierarchical Green-Energy Materials Research Center is active. These topic labels come from the works of this organisation's members. Together they form a unique fingerprint.
Collaborations and top research areas from the last five years
Recent external collaboration on country/territory level. Dive into details by clicking on the dots or
Profiles
Projects
- 4 Finished
-
Ab initio study on changing behaviors of lithium-rich layered composite cathode materials
Chuang, Y. C., Tran, N. T. T., Tsai, P. C. & Lin, S. K., 2024 Oct 1, In: Electrochimica Acta. 500, 144760.Research output: Contribution to journal › Article › peer-review
-
Binder-dependent electrochemical properties of high entropy oxide anodes for lithium-ion batteries
Patra, J., Nguyen, T. X., Panda, A., Majumder, S. B., Yang, C. C., Wu, T. Y., Su, Y. S., Hsieh, C. T., Ting, J. M. & Chang, J. K., 2024 Sept 10, In: Electrochimica Acta. 498, 144653.Research output: Contribution to journal › Article › peer-review
2 Citations (Scopus) -
Ceramicized NASICON-based solid-state electrolytes for lithium metal batteries
Tsai, Y. C., Ku, M. C., Hsieh, C. T., Sung, P. Y., Chen, P. S., Mohanty, D., Gandomi, Y. A., Hung, I. M., Patra, J. & Chang, J. K., 2024 Jul, In: Journal of Solid State Electrochemistry. 28, 7, p. 2047-2057 11 p.Research output: Contribution to journal › Article › peer-review
2 Citations (Scopus)