Roger R.-C. Chen


  • 40 Citations
  • 3 h-Index
If you made any changes in Pure these will be visible here soon.

Personal profile


  • 1987 PhD, Department of Mathematics, University of Utah

Research Interests

  • Differential Geometry
  • Geometric Analysis


  • 1999~present Professor, National Cheng Kung University

Fingerprint Dive into the research topics where Roger R.-C. Chen is active. These topic labels come from the works of this person. Together they form a unique fingerprint.

  • 2 Similar Profiles
Compact Manifold Mathematics
Heat Kernel Mathematics
Lower bound Mathematics
Riemannian Manifold Mathematics
Eigenvalue Problem Mathematics
Eigenvalue Mathematics
Manifolds with Boundary Mathematics
Neumann Boundary Conditions Mathematics

Projects 1997 2009

黎曼流型上Dirac 方程的解

Chen, R. R.


Project: Research project

Spin 流型上的 Dirac 算子

Chen, R. R.


Project: Research project

黎曼流行邊界的幾何和 Dirichlet-to-Neumann 映射

Chen, R. R.


Project: Research project


Chen, R. R.


Project: Research project


Chen, R. R.


Project: Research project

Research Output 1990 2007

  • 40 Citations
  • 3 h-Index
  • 9 Article
3 Citations (Scopus)

Polynomial growth solutions to higher-order linear elliptic equations and systems

Chen, R. & Wang, J., 2007 Jan 1, In : Pacific Journal of Mathematics. 229, 1, p. 49-61 13 p.

Research output: Contribution to journalArticle

Polynomial Growth
Elliptic Systems
Elliptic Equations
Linear equation
Linear Systems

A remark on the harnack inequality for non-self-adjoint evolution equations

Chen, R. R-C., 2001 Dec 1, In : Proceedings of the American Mathematical Society. 129, 7, p. 2163-2173 11 p.

Research output: Contribution to journalArticle

Harnack Inequality
Adjoint Equation
Manifolds with Boundary
Neumann Boundary Conditions
Compact Manifold
1 Citation (Scopus)

On Stekloff eigenvalue problem

Chen, R. & Sung, C. J., 2000 Oct, In : Pacific Journal of Mathematics. 195, 2, p. 277-296 20 p.

Research output: Contribution to journalArticle

Eigenvalue Problem
Second Fundamental Form
Lower bound
Unit normal vector

On Heat Kernel Comparison Theorems

Chen, R., 1999 Jun 20, In : Journal of Functional Analysis. 165, 1, p. 59-79 21 p.

Research output: Contribution to journalArticle

Heat Kernel
Comparison Theorem
Minimal Submanifolds
Space Form
Symmetric Spaces

On global Schrödinger kernel estimate and eigenvalue problem

Chen, R., 1998 Jan, In : Mathematische Zeitschrift. 227, 1, p. 69-81 13 p.

Research output: Contribution to journalArticle

Kernel Estimate
Eigenvalue Problem