2,1,3-Benzothiadiazole (BTD)-moiety-containing red emitter conjugated amphiphilic poly(ethylene glycol)-block-poly(ε-caprolactone) copolymers for bioimaging

Yanqing Tian, Wen Chung Wu, Ching Yi Chen, Tim Strovas, Yongzhong Li, Yuguang Jin, Fengyu Su, Deirdre R. Meldrum, Alex K.Y. Jen

Research output: Contribution to journalArticlepeer-review

28 Citations (Scopus)


2,1,3-Benzothiadiazole (BTD)-containing red emitter was chemically conjugated onto amphiphilic poly(ethylene glycol)-block-poly(ε- caprolactone) (PEG-b-PCL) copolymers to form two new fluorophore-conjugated block copolymers (P5 and P7). P5 is a cationic amino group-containing polymer, whereas P7 is a neutral polymer. The polymers formed micelles in aqueous solution with average diameters of 45 nm (P7) and 78 nm (P5), which were characterized using dynamic light scattering (DLS) and atomic force microscopy (AFM). Cell internalization of the micelles using mouse macrophage RAW 264.7 was investigated. The micelles formed from P5 were endocytosed into the cell's cytoplasm through a non-specific endocytosis process, which was affected by temperature and calcium ions. Micelles formed from P7 could not be endocytosed. The dramatic difference of cell uptake between P5 and P7 indicated the cationic amino groups had a strong influence on the cell internalization to enhance the endocytosis pathway. 3-(4,5-Dimethyl thiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) viability assay was used to evaluate the cytotoxicity of the P5 micelle and no significant toxicity was observed. This study is the first report regarding the synthesis of BTD-conjugated block copolymers and the application of the biomacromolecules for bioimaging.

Original languageEnglish
Pages (from-to)1728-1736
Number of pages9
JournalJournal of Materials Chemistry
Issue number9
Publication statusPublished - 2010

All Science Journal Classification (ASJC) codes

  • General Chemistry
  • Materials Chemistry


Dive into the research topics of '2,1,3-Benzothiadiazole (BTD)-moiety-containing red emitter conjugated amphiphilic poly(ethylene glycol)-block-poly(ε-caprolactone) copolymers for bioimaging'. Together they form a unique fingerprint.

Cite this