TY - JOUR
T1 - 2,4,6-Trinitrotoluene Induces Apoptosis via ROS-Regulated Mitochondrial Dysfunction and Endoplasmic Reticulum Stress in HepG2 and Hep3B Cells
AU - Liao, Hung Yu
AU - Kao, Chih Ming
AU - Yao, Chao Ling
AU - Chiu, Po Wei
AU - Yao, Chun Chen
AU - Chen, Ssu Ching
N1 - Publisher Copyright:
© 2017 The Author(s).
PY - 2017/12/1
Y1 - 2017/12/1
N2 - 2,4,6-trinitrotoluene (TNT) has been reported to cause numerous adverse effects. However, the detailed molecular mechanisms underlying TNT-induced liver toxicity need to be elucidated. In this study, we used HepG2 (p53wt) and Hep3B (p53null) cell lines to investigate the cytotoxic effects of TNT. At first, we found that TNT significantly decreased cell viability and induced DNA damage. Thereafter, through transcriptomic analysis, we observed that the diverse biological functions affected included mitochondrial dysfunction and endoplasmic reticulum (ER) stress. Mitochondrial dysfunction was evidenced by the loss of mitochondrial membrane potential, increased expression of cleaved-caspase-9&-3 and increased caspase-3/7 activity, indicating that apoptosis had occurred. In addition, the expressions of some ER stress-related proteins had increased. Next, we investigated the role of reactive oxygen species (ROS) in TNT-induced cellular toxicity. The levels of DNA damage, mitochondrial dysfunction, ER stress and apoptosis were alleviated when the cells were pretreated with N-acetyl-cysteine (NAC). These results indicated that TNT caused the ROS dependent apoptosis via ER stress and mitochondrial dysfunction. Finally, the cells transfected with CHOP siRNA significantly reversed the TNT-induced apoptosis, which indicated that ER stress led to apoptosis. Overall, we examined TNT-induced apoptosis via ROS dependent mitochondrial dysfunction and ER stress in HepG2 and Hep3B cells.
AB - 2,4,6-trinitrotoluene (TNT) has been reported to cause numerous adverse effects. However, the detailed molecular mechanisms underlying TNT-induced liver toxicity need to be elucidated. In this study, we used HepG2 (p53wt) and Hep3B (p53null) cell lines to investigate the cytotoxic effects of TNT. At first, we found that TNT significantly decreased cell viability and induced DNA damage. Thereafter, through transcriptomic analysis, we observed that the diverse biological functions affected included mitochondrial dysfunction and endoplasmic reticulum (ER) stress. Mitochondrial dysfunction was evidenced by the loss of mitochondrial membrane potential, increased expression of cleaved-caspase-9&-3 and increased caspase-3/7 activity, indicating that apoptosis had occurred. In addition, the expressions of some ER stress-related proteins had increased. Next, we investigated the role of reactive oxygen species (ROS) in TNT-induced cellular toxicity. The levels of DNA damage, mitochondrial dysfunction, ER stress and apoptosis were alleviated when the cells were pretreated with N-acetyl-cysteine (NAC). These results indicated that TNT caused the ROS dependent apoptosis via ER stress and mitochondrial dysfunction. Finally, the cells transfected with CHOP siRNA significantly reversed the TNT-induced apoptosis, which indicated that ER stress led to apoptosis. Overall, we examined TNT-induced apoptosis via ROS dependent mitochondrial dysfunction and ER stress in HepG2 and Hep3B cells.
UR - http://www.scopus.com/inward/record.url?scp=85027523784&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85027523784&partnerID=8YFLogxK
U2 - 10.1038/s41598-017-08308-z
DO - 10.1038/s41598-017-08308-z
M3 - Article
C2 - 28811603
AN - SCOPUS:85027523784
SN - 2045-2322
VL - 7
JO - Scientific reports
JF - Scientific reports
IS - 1
M1 - 8148
ER -