Abstract
Three-dimensional turbulent, transient fluid flow and heat transfer analysis over a sintered bed during a cooling process are studied numerically and experimentally. The sintered bed is modeled as a packed 4-row bed of spheres and the conjugated convective heat transfer in the flow field and heat conduction in the spheres are considered also. The effects of two different porosity (Φ = 0.4, 0.5) and three different particle sphere diameters (D = 50 mm, 70 mm and 100 mm) are investigated in detail for the Reynolds number ranging from 1300 to 11,000. It is shown that, the smaller the particle diameter or porosity, the greater the Nusselt number and friction factor are. The numerical results are in good agreement within 15-20% with the experimental data. The correlation equations for the steady-state average mean Nusselt number and friction factor f are obtained as:Nu = frac(1, φ{symbol}) fenced(8.75 + 0.013 Re0.896) f = frac(2.3, Φ) Re- 0.306These correlations are accurate within 7% for 0.4 ≤ Φ ≤ 0.5 and 1300 ≤ Re ≤ 11000.
Original language | English |
---|---|
Pages (from-to) | 2895-2903 |
Number of pages | 9 |
Journal | Applied Thermal Engineering |
Volume | 29 |
Issue number | 14-15 |
DOIs | |
Publication status | Published - 2009 Oct |
All Science Journal Classification (ASJC) codes
- Energy Engineering and Power Technology
- Industrial and Manufacturing Engineering