A boundary element-based inverse-problem in estimating transient boundary conditions with conjugate gradient method

Cheng Hung Huang, Chih Wei Chen

Research output: Contribution to journalArticlepeer-review

49 Citations (Scopus)

Abstract

A Boundary Element Method (BEM)-based inverse algorithm utilizing the iterative regularization method, ie. the conjugate gradient method (CGM), is used to solve the Inverse Heat Conduction Problem (IHCP) of estimating the unknown transient boundary temperatures in a multi-dimensional domain with arbitrary geometry. The results obtained by the CGM are compared with the obtained by the standard Regularization Method (RM). The error estimated based on the statistical analysis is derived from the formulation of the RM. A 99% confidence bound is thus obtained. Finally, the effects of the measurement errors to the inverse solutions are discussed. Results show that the advantages of applying the CGM in the inverse calculations in that (1) the major difficulties in choosing a suitable quadratic norm, determining a proper regularization order and determining the optimal smoothing (or regularization) coefficient in the RM are avoided, and (2) it is less sensitive to the measurement errors, ie more accurate solutions are obtained.

Original languageEnglish
Pages (from-to)943-965
Number of pages23
JournalInternational Journal for Numerical Methods in Engineering
Volume42
Issue number5
DOIs
Publication statusPublished - 1998 Jul 15

All Science Journal Classification (ASJC) codes

  • Numerical Analysis
  • Engineering(all)
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'A boundary element-based inverse-problem in estimating transient boundary conditions with conjugate gradient method'. Together they form a unique fingerprint.

Cite this