TY - JOUR
T1 - A Complete Fault Tolerant Method for Extra Fault Diagnosability of Alternating Group Graphs
AU - Lin, Limei
AU - Huang, Yanze
AU - Xu, Li
AU - Hsieh, Sun Yuan
N1 - Funding Information:
Manuscript received May 21, 2020; revised August 9, 2020; accepted August 30, 2020. Date of publication September 17, 2020; date of current version August 31, 2021. This work was supported in part by the National Natural Science Foundation of China under Grant 61702100, Grant U1905211, Grant 61702103, and Grant 61771140, in part by the Fok Ying Tung Education Foundation under Grant 171061, and in part by the Fujian University of Technology under Grant GJ-YB-20-06. (Corresponding author: Limei Lin.) Limei Lin and Li Xu are with the College of Mathematics and Informatics, Key Laboratory of Network Security and Cryptology, Fujian Normal University, Fuzhou, Fujian 350117, China, and also with the Center for Applied Mathematics of Fujian Province, Fujian Normal University, Fuzhou, Fujian 350117, China (e-mail: [email protected]; [email protected]).
Publisher Copyright:
© 1963-2012 IEEE.
PY - 2021/9
Y1 - 2021/9
N2 - A network's diagnosability is the maximum number of faulty vertices that the network can discriminate solely by performing mutual tests among vertices. The original diagnosability without any condition is often rather low because it is bounded by the network's minimum degree. The h-extra fault diagnosability is an important and widely accepted diagnostic strategy as a new measure of diagnosability, which guarantees that the scale of every component is at least h+1 in the remaining system. Moreover, it increases the allowed faulty vertices, hence enhancing the diagnosability of the network. There have been lots of state-of-the-art literatures concerning the h-extra fault diagnosability. Although there are some methods to theoretically prove the extra fault diagnosability of some other well-known networks under MM∗ model, these methods have some serious flaws when there exists a 4-cycle in these networks. In this article, we investigate the reason that caused the flawed results in some references, and we derive a different, broadly applicable, and complete fault tolerant method to establish the extra fault diagnosability in an n-dimensional alternating group graph AG_n under MM∗ model. The complete fault tolerant method adopts combinatorial properties and linearly many fault analysis to conquer the core of our proofs. Moreover, we compare the extra fault diagnosability of AG_n with various types of fault diagnosability, including the diagnosability, strong diagnosability, conditional diagnosability, t/k-diagnosability, and pessimistic diagnosability. It can be seen that the extra fault diagnosability is greater than all the other types of fault diagnosability.
AB - A network's diagnosability is the maximum number of faulty vertices that the network can discriminate solely by performing mutual tests among vertices. The original diagnosability without any condition is often rather low because it is bounded by the network's minimum degree. The h-extra fault diagnosability is an important and widely accepted diagnostic strategy as a new measure of diagnosability, which guarantees that the scale of every component is at least h+1 in the remaining system. Moreover, it increases the allowed faulty vertices, hence enhancing the diagnosability of the network. There have been lots of state-of-the-art literatures concerning the h-extra fault diagnosability. Although there are some methods to theoretically prove the extra fault diagnosability of some other well-known networks under MM∗ model, these methods have some serious flaws when there exists a 4-cycle in these networks. In this article, we investigate the reason that caused the flawed results in some references, and we derive a different, broadly applicable, and complete fault tolerant method to establish the extra fault diagnosability in an n-dimensional alternating group graph AG_n under MM∗ model. The complete fault tolerant method adopts combinatorial properties and linearly many fault analysis to conquer the core of our proofs. Moreover, we compare the extra fault diagnosability of AG_n with various types of fault diagnosability, including the diagnosability, strong diagnosability, conditional diagnosability, t/k-diagnosability, and pessimistic diagnosability. It can be seen that the extra fault diagnosability is greater than all the other types of fault diagnosability.
UR - http://www.scopus.com/inward/record.url?scp=85114339697&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85114339697&partnerID=8YFLogxK
U2 - 10.1109/TR.2020.3021233
DO - 10.1109/TR.2020.3021233
M3 - Article
AN - SCOPUS:85114339697
SN - 0018-9529
VL - 70
SP - 957
EP - 969
JO - IEEE Transactions on Reliability
JF - IEEE Transactions on Reliability
IS - 3
M1 - 9199414
ER -