A comprehensive review of hydrogen production from methanol thermochemical conversion for sustainability

Gabriel Garcia, Emmanuel Arriola, Wei Hsin Chen, Mark Daniel De Luna

Research output: Contribution to journalReview articlepeer-review

263 Citations (Scopus)

Abstract

Methanol, a liquid hydrogen carrier, can produce high purity hydrogen when required. This review discusses and compares current mainstream production pathways of hydrogen from methanol. Recent research efforts in methanol steam reforming, partial oxidation, autothermal reforming, and methanol decomposition are addressed. Particular attention is paid to catalyst development and reactor technology. Copper-based catalysts are popular due to their high activity and selectivity towards CO2 over CO but are easily deactivated and have low stability. Attempts have been made using different metals like zinc, zirconia, ceria, chromium, and other transition metals. Catalysts with spinel structures can significantly improve activity and performance. Palladium-zinc alloy catalysts also have high selectivity towards H2 and CO2. For reactors, novel structures such as porous copper fiber sintered-felt are prefabricated and pre-coated before employment in microreactors. Monolith structures provide maximum surface area for catalyst coatings and lower pressure drops. Membrane reactors drive reactions forward to produce more H2. Swiss-roll reactors achieve heat recovery and energy saving in reactions. In summary, this comprehensive review of hydrogen production from methanol is conducive to the prospective development of a hydrogen-methanol economy.

Original languageEnglish
Article number119384
JournalEnergy
Volume217
DOIs
Publication statusPublished - 2021 Feb 15

All Science Journal Classification (ASJC) codes

  • Civil and Structural Engineering
  • Building and Construction
  • Modelling and Simulation
  • Renewable Energy, Sustainability and the Environment
  • Fuel Technology
  • Energy Engineering and Power Technology
  • Pollution
  • General Energy
  • Mechanical Engineering
  • Industrial and Manufacturing Engineering
  • Management, Monitoring, Policy and Law
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'A comprehensive review of hydrogen production from methanol thermochemical conversion for sustainability'. Together they form a unique fingerprint.

Cite this