A computer-aided diagnostic system for detection and segmentation of clustered microcalcification in digital mammograms

Sheng Chih Yang, San Kan Lee, Pau-Choo Chung, Ching Wen Yang, Tain Lee, Giu Cheng Hsu, Chein I. Chang, Chien Shun Lo

Research output: Contribution to journalArticle

Abstract

Clustered microcalcification screened from mammograms provides an early sign of breast cancer. Many impalpable in situ ductal carcinomas and minimal carcinomas can be identified by using X-ray mammography. Generally, microcalcifications are tiny clustered particles and probably smallest structures within the breast, which are difficult to detect. Therefore, microcalcifications are generally overlooked by physicians if they do not carefully screen the mammograms. Consequently, it may cause the delay of medical treatment. So far, X-ray mammography is the only effective screening procedure to detect breast cancer in early stage. However, due to the increasing incidence rates of breast cancer and public awareness, mammography has been also increasingly used by physicians for screening purpose. As a result, a large volume of mammograms will be required to be read by radiologists. Due to shortage of experienced physicians, this tremendous workload creates dilemma to maintain quality of medical diagnosis. This paper presents a computer-aided diagnostic system for detection of clustered microcalcifications, which can help physicians reduce errors in medical diagnosis while improving the quality of medical service. The proposed system includes three stages. The first stage extracts the breast region from a digital mammogram, and the second stage detects the suspicious area in the extracted breast region. Finally, the last stage segments microcalcifications from the suspicious area. In order to evaluate the designed system, a preliminary study was conducted using the public Nijmegen database provided by the Department of Radiology at the Nijmegen University Hospital, Netherlands. According to the different tolerance of Fractal. The experimental results show that the AZ of ROC distribution can achieve 0.96. When the database of TCVGH is used, three categories of mammograms (Obvious, Possibly neglected and Difficult to be identified) were studied according three radiologists' reports. In obvious cases, the rate of true positive could achieve as high as 98%. For all cases, the rate of true positive could also achieve 86%. The results of this paper will provide a further development of mass detection used in computer-aided diagnosis system.

Original languageEnglish
Pages (from-to)89-101
Number of pages13
JournalChinese Journal of Radiology
Volume27
Issue number3
Publication statusPublished - 2002 Jan 1

All Science Journal Classification (ASJC) codes

  • Radiology Nuclear Medicine and imaging

Fingerprint Dive into the research topics of 'A computer-aided diagnostic system for detection and segmentation of clustered microcalcification in digital mammograms'. Together they form a unique fingerprint.

  • Cite this

    Yang, S. C., Lee, S. K., Chung, P-C., Yang, C. W., Lee, T., Hsu, G. C., Chang, C. I., & Lo, C. S. (2002). A computer-aided diagnostic system for detection and segmentation of clustered microcalcification in digital mammograms. Chinese Journal of Radiology, 27(3), 89-101.