A dielectrophoretic single-cell trapping chip with multiple electrodes and arrayed 3D microstructures

Kai Hsuan Wang, Fu Ting Chang, Yung-Chun Lee

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Citations (Scopus)

Abstract

This paper presents the design and fabrication of a novel single-cell trapping dielectrophoretic (DEP) biochip, which consist of arrayed electrodes and 3D microstructures. The DEP biochips consist of ITO top electrodes, PDMS flow chambers, bottom electrode arrays, and SU-8 3D microstructure arrays. In order to achieve single-cell resolution, we fabricate a chess-type bottom electrode array and a bowl-type 3D microstructure array using excimer laser micromachining technique. The 3D structure not only yields a non-uniform electric field for DEP trapping but also enhances the positioning and immobilization of trapped cells. Theoretically, finite element method is applied to simulate the DEP forces. Experimentally, a new image processing method is developed to derive the flow dragging force on beads subjected to DEP force, and therefore estimate the magnitude of DEP force. It is shown that the chip can trap beads and cells in properly chosen media. We also fractionate beads of different sizes by bowl shaped microstructure. The proposed DEP chips have great potentials for measuring cell-membrane impendence and gene transfer in the future.

Original languageEnglish
Title of host publicationProceedings of the 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, IEEE NEMS 2007
Pages528-531
Number of pages4
DOIs
Publication statusPublished - 2007 Aug 28
Event2007 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, IEEE NEMS 2007 - Bangkok, Thailand
Duration: 2007 Jan 162007 Jan 19

Publication series

NameProceedings of the 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, IEEE NEMS 2007

Other

Other2007 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, IEEE NEMS 2007
Country/TerritoryThailand
CityBangkok
Period07-01-1607-01-19

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications
  • Computer Science Applications
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'A dielectrophoretic single-cell trapping chip with multiple electrodes and arrayed 3D microstructures'. Together they form a unique fingerprint.

Cite this