TY - JOUR
T1 - A Facile, Low-Cost Hot-Pressing Process for Fabricating Lithium–Sulfur Cells with Stable Dynamic and Static Electrochemistry
AU - Chung, Sheng Heng
AU - Lai, Ke Yu
AU - Manthiram, Arumugam
N1 - Publisher Copyright:
© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
PY - 2018/11/15
Y1 - 2018/11/15
N2 - Lithium–sulfur batteries are among the most promising low-cost, high-energy-density storage devices. However, the inability to host a sufficient amount of sulfur in the cathode while maintaining good electrochemical stability under a lean electrolyte condition has limited the progress. The main cause of these challenges is the sensitivity of the sulfur cathode to the cell-design parameters (i.e., the amount of sulfur and electrolyte) and the experimental testing conditions (i.e., cycling rates and analysis duration). Here, a hot-pressing method is presented that effectively encapsulates a high amount of sulfur in the cathode within only 5 s, resulting in high sulfur loading and content of, respectively, 10 mg cm−2 and 65 wt%. The hot-pressed sulfur (HPS) cathodes exhibit superior dynamic and static electrochemical performance under a broad cycling-rate (C/20–1C rates) and low electrolyte/sulfur ratio (6 µL mg−1) conditions. The dynamic cell stability is demonstrated by high gravimetric and areal capacities of, respectively, 415–730 mAh g−1 and 7–12 mAh cm−2 at C/20–1C rates with a high capacity retention of over 70% after 200 cycles. The static cell stability is demonstrated by excellent shelf life with low self-discharge and stable cycle life on storing for over one year.
AB - Lithium–sulfur batteries are among the most promising low-cost, high-energy-density storage devices. However, the inability to host a sufficient amount of sulfur in the cathode while maintaining good electrochemical stability under a lean electrolyte condition has limited the progress. The main cause of these challenges is the sensitivity of the sulfur cathode to the cell-design parameters (i.e., the amount of sulfur and electrolyte) and the experimental testing conditions (i.e., cycling rates and analysis duration). Here, a hot-pressing method is presented that effectively encapsulates a high amount of sulfur in the cathode within only 5 s, resulting in high sulfur loading and content of, respectively, 10 mg cm−2 and 65 wt%. The hot-pressed sulfur (HPS) cathodes exhibit superior dynamic and static electrochemical performance under a broad cycling-rate (C/20–1C rates) and low electrolyte/sulfur ratio (6 µL mg−1) conditions. The dynamic cell stability is demonstrated by high gravimetric and areal capacities of, respectively, 415–730 mAh g−1 and 7–12 mAh cm−2 at C/20–1C rates with a high capacity retention of over 70% after 200 cycles. The static cell stability is demonstrated by excellent shelf life with low self-discharge and stable cycle life on storing for over one year.
UR - http://www.scopus.com/inward/record.url?scp=85055720473&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85055720473&partnerID=8YFLogxK
U2 - 10.1002/adma.201805571
DO - 10.1002/adma.201805571
M3 - Article
C2 - 30368962
AN - SCOPUS:85055720473
SN - 0935-9648
VL - 30
JO - Advanced Materials
JF - Advanced Materials
IS - 46
M1 - 1805571
ER -