A FCM-based deterministic forecasting model for fuzzy time series

Sheng Tun Li, Yi Chung Cheng, Su Yu Lin

Research output: Contribution to journalArticlepeer-review

106 Citations (Scopus)


The study of fuzzy time series has increasingly attracted much attention due to its salient capabilities of tackling uncertainty and vagueness inherent in the data collected. A variety of forecasting models including high-order models have been devoted to improving forecasting accuracy. However, the high-order forecasting approach is accompanied by the crucial problem of determining an appropriate order number. Consequently, such a deficiency was recently solved by Li and Cheng [S.-T. Li, Y.-C. Cheng, Deterministic Fuzzy time series model for forecasting enrollments, Computers and Mathematics with Applications 53 (2007) 1904-1920] using a deterministic forecasting method. In this paper, we propose a novel forecasting model to enhance forecasting functionality and allow processing of two-factor forecasting problems. In addition, this model applies fuzzy c-means (FCM) clustering to deal with interval partitioning, which takes the nature of data points into account and produces unequal-sized intervals. Furthermore, in order to cope with the randomness of initially assigned membership degrees of FCM clustering, Monte Carlo simulations are used to justify the reliability of the proposed model. The superior accuracy of the proposed model is demonstrated by experiments comparing it to other existing models using real-world empirical data.

Original languageEnglish
Pages (from-to)3052-3063
Number of pages12
JournalComputers and Mathematics with Applications
Issue number12
Publication statusPublished - 2008 Dec

All Science Journal Classification (ASJC) codes

  • Modelling and Simulation
  • Computational Theory and Mathematics
  • Computational Mathematics


Dive into the research topics of 'A FCM-based deterministic forecasting model for fuzzy time series'. Together they form a unique fingerprint.

Cite this