A forecasting model for small non-equigap data sets considering data weights and occurrence possibilities

Che Jung Chang, Der Chiang Li, Chien Chih Chen, Chia Sheng Chen

Research output: Contribution to journalArticlepeer-review

42 Citations (Scopus)

Abstract

In the early stages of manufacturing systems, it is often difficult to obtain sufficient data to make accurate forecasts. Grey system theory is one of the approaches to deal with this issue, as it uses fairly small sets to construct forecasting models. Among published grey models, the current non-equigap grey models can deal with data having unequal gaps, and have been applied in various fields. However, these models usually use fixed modeling procedures that do not consider data growth trend differences. This paper utilizes the trend and potency tracking method to determine the parameter α of the background value to build an adaptive non-equigap grey model to improve forecasting performance. The experimental results indicate that the proposed method considers that data occurrence properties can obtain better forecasting results.

Original languageEnglish
Pages (from-to)139-145
Number of pages7
JournalComputers and Industrial Engineering
Volume67
Issue number1
DOIs
Publication statusPublished - 2014

All Science Journal Classification (ASJC) codes

  • General Computer Science
  • General Engineering

Fingerprint

Dive into the research topics of 'A forecasting model for small non-equigap data sets considering data weights and occurrence possibilities'. Together they form a unique fingerprint.

Cite this