Abstract
Although there are many well-established control methods for vibration mitigation of seismic structures with active devices, their direct application for structures with semi-active control devices are limited. This limitation is primarily contributed by the fact that a semi-active device can only provide a resistant (passive) force to the controlled structure. In this paper, a general method for semi-active feedback control of seismic structures with variable friction dampers (VFD) is proposed. In order to overcome the force limitation of friction dampers, the method forms a semi-active feedback gain by multiplying an active gain with Heaviside functions. Based on this method, two newly developed control laws, i.e., semi-active modal control and semi-active optimal control were numerically investigated. A multiple DOF structural system with various sensor deployments, for either full-state or direct-output feedbacks was considered in the numerical study. The performances of both semi-active control laws for seismic vibration mitigation were compared with those of passive and active controls. The numerical results showed that both semi-active controls resulted in better acceleration reductions than the passive case and were able to closely imitate the performance of their active control counterparts.
Original language | English |
---|---|
Pages (from-to) | 393-412 |
Number of pages | 20 |
Journal | Journal of Intelligent Material Systems and Structures |
Volume | 15 |
Issue number | 5 |
DOIs | |
Publication status | Published - 2004 May 1 |
All Science Journal Classification (ASJC) codes
- Materials Science(all)
- Mechanical Engineering