A general study of counterflow diffusion flames at subcritical and supercritical conditions: Oxygen/hydrogen mixtures

Hongfa Huo, Xingjian Wang, Vigor Yang

Research output: Contribution to journalArticlepeer-review

47 Citations (Scopus)

Abstract

A theoretical framework is established to study the effect of flow strain rate on counterflow diffusion flames for general fluids over the entire thermodynamic regime. The formulation accommodates fundamental thermodynamics and transport theories, along with detailed chemical mechanisms. Both steady and unsteady burning branches of a complete flame-response curve (the S-curve) are considered. An improved two-point flame-controlling continuation method is employed to solve the singularity problem at the turning points on the S-curve. As a specific example, oxygen/hydrogen flames are systematically investigated over a pressure range of 0.5-200atm. The strain rate is varied from 102 to 108s-1. Two different inlet temperatures for oxygen (120 and 300K) and hydrogen (20 and 300K) are treated to explore flame behaviors at the ideal-gas and cryogenic-liquid states. General flame similarities (in terms of flame temperature, flame thickness, species concentrations, reaction rates, and heat release rate) are developed in a normalized strain-rate space (a/aext) for the entire range of pressures under consideration. Quantitative mapping of flame properties from one pressure to another is obtained. In addition, an analytical model is developed to refine and elucidate a previously established relationship between the heat release rate and pressure and strain rate in the form of q˙~p0.534a. The heat release rate, when normalized with respect to p0.534aext, correlates well with the normalized strain rate (a/aext). Both numerical and analytical results show that the extinction strain rate is approximately proportional to pressure; this allows for a priori mapping of flame solutions between different pressure conditions. This in turn will significantly improve the computational efficiency of combustion modeling using tabulated chemistry, including the flamelet, FGM, and FPI models. Cryogenic inlet temperature affects only the flame location, without discernibly modifying the flame structures, which suggests that the ideal-gas flame solutions can be used for flame tabulation.

Original languageEnglish
Pages (from-to)3040-3050
Number of pages11
JournalCombustion and Flame
Volume161
Issue number12
DOIs
Publication statusPublished - 2014 Dec 1

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Chemical Engineering(all)
  • Fuel Technology
  • Energy Engineering and Power Technology
  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'A general study of counterflow diffusion flames at subcritical and supercritical conditions: Oxygen/hydrogen mixtures'. Together they form a unique fingerprint.

Cite this