A global secant relaxation (GSR) method-based predictor-corrector procedure for the iterative solution of finite element systems

Chang New Chen

Research output: Contribution to journalArticle

14 Citations (Scopus)

Abstract

In this paper, an iterative procedure based on improving the diagonal stiffness prediction is used to solve general finite element systems. The procedure consists of a predictor and a corrector, for each iteration step, iteratively obtaining the converged solution. The diagonal stiffness prediction works to predict an incremental response vector for the discrete algebraic system, while the global secant relaxation (GSR) technique works as a corrector, in which a scaling factor is used to adjust the incremental response vector. Drastic reduction of the computer memory requirement can be expected by adopting the diagonal stiffness prediction, and the numerical stability and convergence rate can be improved significantly through the introduction of GSR correction. An efficient and reliable scaling factor is used with which a higher order convergence rate can be expected for the iterative computation.

Original languageEnglish
Pages (from-to)199-205
Number of pages7
JournalComputers and Structures
Volume54
Issue number2
DOIs
Publication statusPublished - 1995 Jan 17

All Science Journal Classification (ASJC) codes

  • Civil and Structural Engineering
  • Modelling and Simulation
  • Materials Science(all)
  • Mechanical Engineering
  • Computer Science Applications

Fingerprint Dive into the research topics of 'A global secant relaxation (GSR) method-based predictor-corrector procedure for the iterative solution of finite element systems'. Together they form a unique fingerprint.

Cite this