A hierarchical approach for online temporal lobe seizure detection in long-term intracranial EEG recordings

Sheng Fu Liang, Yi Chun Chen, Yu Lin Wang, Pin Tzu Chen, Chia Hsiang Yang, Herming Chiueh

Research output: Contribution to journalArticlepeer-review

34 Citations (Scopus)


Objective. Around 1% of the world's population is affected by epilepsy, and nearly 25% of patients cannot be treated effectively by available therapies. The presence of closed-loop seizure-triggered stimulation provides a promising solution for these patients. Realization of fast, accurate, and energy-efficient seizure detection is the key to such implants. In this study, we propose a two-stage on-line seizure detection algorithm with low-energy consumption for temporal lobe epilepsy (TLE). Approach. Multi-channel signals are processed through independent component analysis and the most representative independent component (IC) is automatically selected to eliminate artifacts. Seizure-like intracranial electroencephalogram (iEEG) segments are fast detected in the first stage of the proposed method and these seizures are confirmed in the second stage. The conditional activation of the second-stage signal processing reduces the computational effort, and hence energy, since most of the non-seizure events are filtered out in the first stage. Main results. Long-term iEEG recordings of 11 patients who suffered from TLE were analyzed via leave-one-out cross validation. The proposed method has a detection accuracy of 95.24%, a false alarm rate of 0.09/h, and an average detection delay time of 9.2 s. For the six patients with mesial TLE, a detection accuracy of 100.0%, a false alarm rate of 0.06/h, and an average detection delay time of 4.8 s can be achieved. The hierarchical approach provides a 90% energy reduction, yielding effective and energy-efficient implementation for real-time epileptic seizure detection. Significance. An on-line seizure detection method that can be applied to monitor continuous iEEG signals of patients who suffered from TLE was developed. An IC selection strategy to automatically determine the most seizure-related IC for seizure detection was also proposed. The system has advantages of (1) high detection accuracy, (2) low false alarm, (3) short detection latency, and (4) energy-efficient design for hardware implementation.

Original languageEnglish
Article number045004
JournalJournal of Neural Engineering
Issue number4
Publication statusPublished - 2013 Aug

All Science Journal Classification (ASJC) codes

  • Biomedical Engineering
  • Cellular and Molecular Neuroscience


Dive into the research topics of 'A hierarchical approach for online temporal lobe seizure detection in long-term intracranial EEG recordings'. Together they form a unique fingerprint.

Cite this