A hybrid dynamic pre-emptive and competitive neural-network approach in solving the multi-objective dispatching problem for TFT-LCD manufacturing

Taho Yang, Jiunn Chenn Lu

Research output: Contribution to journalArticlepeer-review

9 Citations (Scopus)

Abstract

This research addresses a hybrid dynamic pre-emptive and competitive neural-network approach in solving the multi-objective dispatching problem. It optimises three performance criteria simultaneously, namely: cycle time, slack time, and throughput. A case study is adopted to illustrate the performance of applying the methodology. Thin film transistor-liquid crystal display (TFT-LCD) is a high-technology industry, with a growing market. The manufacturing process is complex. It involves multi-products, sequence-dependent set-ups, random breakdowns, and multiple-objectives, with bias-weighted optimisation problems. To determine appropriate dispatching strategies, under various system conditions, is a non-trivial challenge to control the complex systems. There has been little research on these problems aimed at solving them simultaneously. This paper presents an event-triggered dynamic dispatching system that combines artificial intelligence methods to archive optimum dispatching strategies under diverse shop-floor conditions. Results show this system to be superior to previous researches.

Original languageEnglish
Pages (from-to)4807-4828
Number of pages22
JournalInternational Journal of Production Research
Volume48
Issue number16
DOIs
Publication statusPublished - 2010 Jan

All Science Journal Classification (ASJC) codes

  • Strategy and Management
  • Management Science and Operations Research
  • Industrial and Manufacturing Engineering

Fingerprint Dive into the research topics of 'A hybrid dynamic pre-emptive and competitive neural-network approach in solving the multi-objective dispatching problem for TFT-LCD manufacturing'. Together they form a unique fingerprint.

Cite this