Abstract
In this paper, a hybrid particle swarm optimization algorithm (HPSO) is proposed for the DNA fragment assembly (DFA) problem by maximizing the overlapping-score measurement. The smallest position value (SPV) rule is used for encoding the particles to enable PSO to be suitable for DFA, and the Tabu search algorithms are used to initialize the particles. Additionally, a simulated annealing (SA) algorithm-based local search is utilized for local search to improve the best solution after the PSO search process. Finally, the results show that HPSO can significantly get better overlap score than other PSO-based algorithms with different-sized benchmarks.
Original language | English |
---|---|
Pages | 223-228 |
Number of pages | 6 |
DOIs | |
Publication status | Published - 2012 Dec 12 |
Event | 3rd International Conference on Innovations in Bio-Inspired Computing and Applications, IBICA 2012 - Kaohsiung City, Taiwan Duration: 2012 Sept 26 → 2012 Sept 28 |
Other
Other | 3rd International Conference on Innovations in Bio-Inspired Computing and Applications, IBICA 2012 |
---|---|
Country/Territory | Taiwan |
City | Kaohsiung City |
Period | 12-09-26 → 12-09-28 |
All Science Journal Classification (ASJC) codes
- Bioengineering
- Software