A hybrid unequal clustering based on density with energy conservation in wireless nodes

Tao Han, Seyed Mostafa Bozorgi, Ayda Valinezhad Orang, Ali Asghar Rahmani Hosseinabadi, Arun Kumar Sangaiah, Mu Yen Chen

Research output: Contribution to journalArticlepeer-review

13 Citations (Scopus)


The Internet of things (IoT) provides the possibility of communication between smart devices and any object at any time. In this context, wireless nodes play an important role in reducing costs and simple use. Since these nodes are often used in less accessible locations, recharging their battery is hardly feasible and in some cases is practically impossible. Hence, energy conservation within each node is a challenging discussion. Clustering is an efficient solution to increase the lifetime of the network and reduce the energy consumption of the nodes. In this paper, a novel hybrid unequal multi-hop clustering based on density (HCD) is proposed to increase the network lifetime. In the proposed protocol, the cluster head (CH) selection is performed only by comparing the status of each node to its neighboring nodes. In this new technique, the parameters involving energy of nodes, the number of neighboring nodes, the distance to the base station (BS), and the layer where the node is placed in are considered in CH selection. So, in this new and simple technique considers energy consumption of the network and load balancing. Clustering is performed unequally so that cluster heads (CHs) close to BS have more energy for data relay. Also, a hybrid dynamic-static clustering was performed to decrease overhead. In the current protocol, a distributed clustering and multi-hop routing approach was applied between cluster members (CMs), to CHs, and CHs to BS. HCD is applied as a novel assistance to cluster heads (ACHs) mechanism, in a way that a CH accepts to use member nodes with suitable state to share traffic load. Furthermore, we performed simulation for two different scenarios. Simulation results showed the reliability of the proposed method as it was resulted in a significant increase in network stability and energy balance as well as network lifetime and efficiency.

Original languageEnglish
Article number746
JournalSustainability (Switzerland)
Issue number3
Publication statusPublished - 2019 Jan 31

All Science Journal Classification (ASJC) codes

  • Geography, Planning and Development
  • Renewable Energy, Sustainability and the Environment
  • Environmental Science (miscellaneous)
  • Energy Engineering and Power Technology
  • Management, Monitoring, Policy and Law


Dive into the research topics of 'A hybrid unequal clustering based on density with energy conservation in wireless nodes'. Together they form a unique fingerprint.

Cite this