A local high-order deformable theory for thick laminated cylindrical shells

Chih Ping Wu, Chi Chuan Liu

Research output: Contribution to journalArticlepeer-review

9 Citations (Scopus)

Abstract

A local high-order deformable theory for the bending analysis of thick laminated cylindrical shells is developed here. The shell displacements in this theory are assumed to be high-order polynomial functions layer-by-layer through the shell thickness. The displacement continuity constraints at the interface between layers are introduced into the potential energy functional by the Lagrange multiplier method. A set of governing equations and admissible boundary conditions based on this modified potential energy functional are derived. The present analytical solutions of cross-ply circular cylindrical shells with shear diaphragm supports are determined by using the Fourier series expansion method. The present analytical solutions are compared with the 3-D elasticity solutions and the analytical solutions obtained from other laminated cylindrical shell theories. This reveals that the present results agree very closely with the 3-D elasticity solutions.

Original languageEnglish
Pages (from-to)69-87
Number of pages19
JournalComposite Structures
Volume29
Issue number1
DOIs
Publication statusPublished - 1994

All Science Journal Classification (ASJC) codes

  • Ceramics and Composites
  • Civil and Structural Engineering

Fingerprint

Dive into the research topics of 'A local high-order deformable theory for thick laminated cylindrical shells'. Together they form a unique fingerprint.

Cite this