A MALL geometry of interaction based on indexed linear logic

Research output: Contribution to journalArticlepeer-review

Abstract

We construct a geometry of interaction (GoI: dynamic modelling of Gentzen-style cut elimination) for multiplicative-additive linear logic (MALL) by employing Bucciarelli-Ehrhard indexed linear logic MALL(I) to handle the additives. Our construction is an extension to the additives of the Haghverdi-Scott categorical formulation (a multiplicative GoI situation in a traced monoidal category) for Girard's original GoI 1. The indices are shown to serve not only in their original denotational level, but also at a finer grained dynamic level so that the peculiarities of additive cut elimination such as superposition, erasure of subproofs, and additive (co-) contraction can be handled with the explicit use of indices. Proofs are interpreted as indexed subsets in the category Rel, but without the explicit relational composition; instead, execution formulas are run pointwise on the interpretation at each index, with respect to symmetries of cuts, in a traced monoidal category with a reflexive object and a zero morphism. The sets of indices diminish overall when an execution formula is run, corresponding to the additive cut-elimination procedure (erasure), and allowing recovery of the relational composition. The main theorem is the invariance of the execution formulas along cut elimination so that the formulas converge to the denotations of (cut-free) proofs.

Original languageEnglish
Pages (from-to)1025-1053
Number of pages29
JournalMathematical Structures in Computer Science
Volume30
Issue number10
DOIs
Publication statusPublished - 2020 Nov

All Science Journal Classification (ASJC) codes

  • Mathematics (miscellaneous)
  • Computer Science Applications

Fingerprint

Dive into the research topics of 'A MALL geometry of interaction based on indexed linear logic'. Together they form a unique fingerprint.

Cite this