TY - JOUR
T1 - A method for the preparation of stable dispersion of zero-valent iron nanoparticles
AU - Sun, Yuan Pang
AU - Li, Xiao Qin
AU - Zhang, Wei Xian
AU - Wang, H. Paul
N1 - Funding Information:
This research was partially supported by Grants from the Pennsylvania Infrastructure Technology Alliance (PITA), a National Science Foundation (NSF) CAREER award and USEPA STAR grants to the senior author (WZ).
PY - 2007/10/31
Y1 - 2007/10/31
N2 - Reported herein is a method for the synthesis of fully dispersed and reactive nanoscale particles of zero-valent iron. Polyvinyl alcohol-co-vinyl acetate-co-itaconic acid (PV3A), a nontoxic and biodegradable surfactant, is used in the synthesis of the nanoscale zero-valent iron (nZVI). The addition of PV3A effects three key surface-related changes, which lead to significant enhancements in surface chemistry, particle stability and subsurface mobility potential. These include (1) a reduction of the mean nZVI particle size from 105 nm to 15 nm, (2) a reduction of the zeta (ζ)-potential from +20 mV to -80 mV at neutral pH, and (3) a shift of the isoelectric point (IEP) from pH ≅ 8.1 to 4.5. X-ray photoelectron spectroscopy (XPS) indicates the sorption of PV3A on the nanoparticle surface and also the existence of zero-valent iron (Fe0) in the nZVI mass. Batch experiments further confirm that the PV3A-stabilized iron nanoparticles are capable of effectively reducing trichloroethene (TCE), as has been observed with previous nZVI materials. No sedimentation of the PV3A stabilized nZVI has been observed for over 6 months, suggesting the formation of stable nZVI dispersion. The appreciably smaller mean particle sizes and ability to remain in suspension should translate into improved subsurface mobility potential.
AB - Reported herein is a method for the synthesis of fully dispersed and reactive nanoscale particles of zero-valent iron. Polyvinyl alcohol-co-vinyl acetate-co-itaconic acid (PV3A), a nontoxic and biodegradable surfactant, is used in the synthesis of the nanoscale zero-valent iron (nZVI). The addition of PV3A effects three key surface-related changes, which lead to significant enhancements in surface chemistry, particle stability and subsurface mobility potential. These include (1) a reduction of the mean nZVI particle size from 105 nm to 15 nm, (2) a reduction of the zeta (ζ)-potential from +20 mV to -80 mV at neutral pH, and (3) a shift of the isoelectric point (IEP) from pH ≅ 8.1 to 4.5. X-ray photoelectron spectroscopy (XPS) indicates the sorption of PV3A on the nanoparticle surface and also the existence of zero-valent iron (Fe0) in the nZVI mass. Batch experiments further confirm that the PV3A-stabilized iron nanoparticles are capable of effectively reducing trichloroethene (TCE), as has been observed with previous nZVI materials. No sedimentation of the PV3A stabilized nZVI has been observed for over 6 months, suggesting the formation of stable nZVI dispersion. The appreciably smaller mean particle sizes and ability to remain in suspension should translate into improved subsurface mobility potential.
UR - http://www.scopus.com/inward/record.url?scp=34548011457&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=34548011457&partnerID=8YFLogxK
U2 - 10.1016/j.colsurfa.2007.05.029
DO - 10.1016/j.colsurfa.2007.05.029
M3 - Article
AN - SCOPUS:34548011457
SN - 0927-7757
VL - 308
SP - 60
EP - 66
JO - Colloids and Surfaces A: Physicochemical and Engineering Aspects
JF - Colloids and Surfaces A: Physicochemical and Engineering Aspects
IS - 1-3
ER -