A new approach to assess product lifetime performance for small data sets

Der Chiang Li, Liang Sian Lin

Research output: Contribution to journalArticlepeer-review

21 Citations (Scopus)

Abstract

Because of cost and time limit factors, the number of samples is usually small in the early stages of manufacturing systems, and the scarcity of actual data will cause problems in decision-making. In order to solve this problem, this paper constructs a counter-intuitive hypothesis testing method by choosing the maximal p-value based on a two-parameter Weibull distribution to enhance the estimate of a nonlinear and asymmetrical shape of product lifetime distribution. Further, we systematically generate virtual data to extend the small data set to improve learning robustness of product lifetime performance. This study provides simulated data sets and two practical examples to demonstrate that the proposed method is a more appropriate technique to increase estimation accuracy of product lifetime for normal or non-normal data with small sample sizes.

Original languageEnglish
Pages (from-to)290-298
Number of pages9
JournalEuropean Journal of Operational Research
Volume230
Issue number2
DOIs
Publication statusPublished - 2013 Oct 16

All Science Journal Classification (ASJC) codes

  • Computer Science(all)
  • Modelling and Simulation
  • Management Science and Operations Research
  • Information Systems and Management

Fingerprint Dive into the research topics of 'A new approach to assess product lifetime performance for small data sets'. Together they form a unique fingerprint.

Cite this