A nonlinear inverse design problem for a pipe type heat exchanger equipped with internal z-shape lateral fins and ribs

Cheng Hung Huang, Chih Yang Kuo

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)

Abstract

A non-linear three-dimensional inverse shape design problem was investigated for a pipe type heat exchanger to estimate the design variables of continuous lateral ribs on internal Z-shape lateral fins for maximum thermal performance factor η. The design variables were considered as the positions, heights, and number of ribs while the physical properties of air were considered as a polynomial function of temperature; this makes the problem non-linear. The direct problem was solved using software package CFD-ACE+, and the Levenberg-Marquardt method (LMM) was utilized as the optimization tool because it has been proven to be a powerful algorithm for solving inverse problems. Z-shape lateral fins were found to be the best thermal performance among Z-shape, S-shape, and V-shape lateral fins. The objective of this study was to include continuous lateral ribs to Z-shape lateral fins to further improve η. Firstly, the numerical solutions of direct problem were solved using both polynomial and constant air properties and then compared with the corrected solutions to verify the necessity for using polynomial air properties. Then, four design cases, A, B, C and D, based on various design variables were conducted numerically, and the resultant η values were computed and compared. The results revealed that considering continuous lateral ribs on the surface of Z-shape lateral fins can indeed improve η value at the design working condition Re = 5000. η values of designs A, B and C were approximately 13% higher than that for Z-shape lateral fins, however, when the rib numbers were increased, i.e., design D, the value of η became only 11.5% higher. This implies that more ribs will not guarantee higher η value.

Original languageEnglish
Article number6424
JournalEnergies
Volume13
Issue number23
DOIs
Publication statusPublished - 2020 Dec 1

All Science Journal Classification (ASJC) codes

  • Renewable Energy, Sustainability and the Environment
  • Fuel Technology
  • Energy Engineering and Power Technology
  • Energy (miscellaneous)
  • Control and Optimization
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'A nonlinear inverse design problem for a pipe type heat exchanger equipped with internal z-shape lateral fins and ribs'. Together they form a unique fingerprint.

Cite this