TY - GEN
T1 - A novel blockage-avoiding macro placement approach for 3D ICs based on POCS
AU - Lin, Jai Ming
AU - Lu, Po Chen
AU - Lin, Heng Yu
AU - Tsai, Jia Ting
N1 - Publisher Copyright:
© 2022 Association for Computing Mathinery.
PY - 2022/10/30
Y1 - 2022/10/30
N2 - Although the 3D integrated circuit (IC) placement problem has been studied for many years, few publications devoted to the macro legalization. Due to large sizes of macros, the macro placement problem is harder than cell placement , especially when preplaced macros exist in a multi-tier structure. In order to have a more global view, this paper proposes the partitioning-last macro-first flow to handle 3D placement for mixed-size designs, which performs tier partitioning after placement prototyping and then legalizes macros before cell placement. A novel two-step approach is proposed to handle 3D macro placement. The first step determines locations of macros in a projection plane based on a new representation, named K-tier Partially Occupied Corner Stitching. It not only can keep the prototyping result but also guarantees a legal placement after tier assignment of macros. Next, macros are assigned to respective tiers by Integer Linear Programming (ILP) algorithm. Experimental results show that our design flow can obtain better solutions than other flows especially in the cases with more preplaced macros.
AB - Although the 3D integrated circuit (IC) placement problem has been studied for many years, few publications devoted to the macro legalization. Due to large sizes of macros, the macro placement problem is harder than cell placement , especially when preplaced macros exist in a multi-tier structure. In order to have a more global view, this paper proposes the partitioning-last macro-first flow to handle 3D placement for mixed-size designs, which performs tier partitioning after placement prototyping and then legalizes macros before cell placement. A novel two-step approach is proposed to handle 3D macro placement. The first step determines locations of macros in a projection plane based on a new representation, named K-tier Partially Occupied Corner Stitching. It not only can keep the prototyping result but also guarantees a legal placement after tier assignment of macros. Next, macros are assigned to respective tiers by Integer Linear Programming (ILP) algorithm. Experimental results show that our design flow can obtain better solutions than other flows especially in the cases with more preplaced macros.
UR - http://www.scopus.com/inward/record.url?scp=85145653299&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85145653299&partnerID=8YFLogxK
U2 - 10.1145/3508352.3549352
DO - 10.1145/3508352.3549352
M3 - Conference contribution
AN - SCOPUS:85145653299
T3 - IEEE/ACM International Conference on Computer-Aided Design, Digest of Technical Papers, ICCAD
BT - Proceedings of the 41st IEEE/ACM International Conference on Computer-Aided Design, ICCAD 2022
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 41st IEEE/ACM International Conference on Computer-Aided Design, ICCAD 2022
Y2 - 30 October 2022 through 4 November 2022
ER -