TY - JOUR
T1 - A novel PPARgamma agonist monascin's potential application in diabetes prevention
AU - Hsu, Wei Hsuan
AU - Pan, Tzu Ming
PY - 2014/7
Y1 - 2014/7
N2 - Edible fungi of the Monascus species have been used as traditional Chinese medicine in eastern Asia for several centuries. Monascus-fermented products possess a number of functional secondary metabolites, including the anti-inflammatory pigments monascin and ankaflavin. Monascin has been shown to prevent or ameliorate several conditions, including hypercholesterolemia, hyperlipidemia, diabetes, and obesity. Recently, monascin has been shown to improve hyperglycemia, attenuate oxidative stress, inhibit insulin resistance, and suppress inflammatory cytokine production. In our recent study, we have found that monascin is a peroxisome proliferator-activated receptor-gamma (PPARgamma) agonist. The PPARgamma agonist activity had been investigated and its exerted benefits are inhibition of inflammation in methylglyoxal (MG)-treated rats, prevention of pancreas impairment causing advanced glycation endproducts (AGEs), promotion of insulin expression in vivo and in vitro, and attenuated carboxymethyllysine (CML)-induced hepatic stellate cell (HSC) activation in the past several years. Moreover, our studies also demonstrated that monascin also activated nuclear factor-erythroid 2-related factor 2 (Nrf2) in pancreatic RIN-m5F cell line thereby invading methylglyoxal induced pancreas dysfunction. In this review, we focus on the chemo-preventive properties of monascin against metabolic syndrome through PPARgamma and Nrf2 pathways. This journal is
AB - Edible fungi of the Monascus species have been used as traditional Chinese medicine in eastern Asia for several centuries. Monascus-fermented products possess a number of functional secondary metabolites, including the anti-inflammatory pigments monascin and ankaflavin. Monascin has been shown to prevent or ameliorate several conditions, including hypercholesterolemia, hyperlipidemia, diabetes, and obesity. Recently, monascin has been shown to improve hyperglycemia, attenuate oxidative stress, inhibit insulin resistance, and suppress inflammatory cytokine production. In our recent study, we have found that monascin is a peroxisome proliferator-activated receptor-gamma (PPARgamma) agonist. The PPARgamma agonist activity had been investigated and its exerted benefits are inhibition of inflammation in methylglyoxal (MG)-treated rats, prevention of pancreas impairment causing advanced glycation endproducts (AGEs), promotion of insulin expression in vivo and in vitro, and attenuated carboxymethyllysine (CML)-induced hepatic stellate cell (HSC) activation in the past several years. Moreover, our studies also demonstrated that monascin also activated nuclear factor-erythroid 2-related factor 2 (Nrf2) in pancreatic RIN-m5F cell line thereby invading methylglyoxal induced pancreas dysfunction. In this review, we focus on the chemo-preventive properties of monascin against metabolic syndrome through PPARgamma and Nrf2 pathways. This journal is
UR - http://www.scopus.com/inward/record.url?scp=84903276524&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84903276524&partnerID=8YFLogxK
U2 - 10.1039/c3fo60575b
DO - 10.1039/c3fo60575b
M3 - Review article
C2 - 24752777
AN - SCOPUS:84903276524
SN - 2042-6496
VL - 5
SP - 1334
EP - 1340
JO - Food and Function
JF - Food and Function
IS - 7
ER -