Abstract
A novel, very high breakdown voltage, field effect transistor (FET) using a camel diode structure instead of a Schottky barrier gate has been fabricated successfully by molecular beam epitaxy. The camel diode gate has several advantages over a conventional metal-electron-semiconductor FET, including elimination of metallurgical difficulties of the metal-semiconductor contact, relatively easy adjustment of built-in voltage and the potential for improving reliability in adverse environments and under high power dissipation. If the gate length is reduced to 1 microm, a transconductance in excess of 200 mS mm-1 can be expected. A significant improvement of the gate-drain breakdown voltage to 70 V has been obtained. This excellent value is superior to those reported for other GaAs FETs. Consequently, the proposed structure is suitable for high power applications.
Original language | English |
---|---|
Pages (from-to) | 1-6 |
Number of pages | 6 |
Journal | Thin Solid Films |
Volume | 195 |
Issue number | 1-2 |
DOIs | |
Publication status | Published - 1991 Jan |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Surfaces and Interfaces
- Surfaces, Coatings and Films
- Metals and Alloys
- Materials Chemistry