Abstract
This paper proposes a three-layered parallel fuzzy inference model called reinforcement fuzzy neural network with distributed prediction scheme (RFNN-DPS), which performs reinforcement learning with a novel distributed prediction scheme. In RFNN-DPS, an additional predictor for predicting the external reinforcement signal is not necessary, and the internal reinforcement information is distributed into fuzzy rules (rule nodes). Therefore, using RFNN-DPS, only one network is needed to construct a fuzzy logic system with the abilities of parallel inference and reinforcement learning. Basically, the information for prediction in RFNN-DPS is composed of credit values stored in fuzzy rule nodes, where each node holds a credit vector to represent the reliability of the corresponding fuzzy rule. The credit values are not only accessed for predicting external reinforcement signals, but also provide a more profitable internal reinforcement signal to each fuzzy rule itself. RFNN-DPS performs a credit-based exploratory algorithm to adjust its internal status according to the internal reinforcement signal. During learning, the RFNN-DPS network is constructed by a single-step or multistep reinforcement learning algorithm based on the ART concept. According to our experimental results, RFNN-DPS shows the advantages of simple network structure, fast learning speed, and explicit representation of rule reliability.
Original language | English |
---|---|
Pages (from-to) | 160-172 |
Number of pages | 13 |
Journal | IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics |
Volume | 28 |
Issue number | 2 |
DOIs | |
Publication status | Published - 1998 |
All Science Journal Classification (ASJC) codes
- Control and Systems Engineering
- Software
- Information Systems
- Human-Computer Interaction
- Computer Science Applications
- Electrical and Electronic Engineering