A quantum photonic dissipative transport theory

Chan U. Lei, Wei Min Zhang

Research output: Contribution to journalArticlepeer-review

43 Citations (Scopus)


In this paper, a quantum transport theory for describing photonic dissipative transport dynamics in nanophotonics is developed. The nanophotonic devices concerned in this paper consist of on-chip all-optical integrated circuits incorporating photonic bandgap waveguides and driven resonators embedded in nanostructured photonic crystals. The photonic transport through waveguides is entirely determined from the exact master equation of the driven resonators, which is obtained by explicitly eliminating all the degrees of freedom of the waveguides (treated as reservoirs). Back-reactions from the reservoirs are fully taken into account. The relation between the driven photonic dynamics and photocurrents is obtained explicitly. The non-Markovian memory structure and quantum decoherence dynamics in photonic transport can then be fully addressed. As an illustration, the theory is utilized to study the transport dynamics of a photonic transistor consisting of a nanocavity coupled to two waveguides in photonic crystals. The controllability of photonic transport through the external driven field is demonstrated.

Original languageEnglish
Pages (from-to)1408-1433
Number of pages26
JournalAnnals of Physics
Issue number5
Publication statusPublished - 2012 May

All Science Journal Classification (ASJC) codes

  • Physics and Astronomy(all)


Dive into the research topics of 'A quantum photonic dissipative transport theory'. Together they form a unique fingerprint.

Cite this