A recommendation framework for remote sensing images by spatial relation analysis

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)

Abstract

In recent years, Remote Sensing Images (RS-Images) are widely recognized as an essential geospatial data due to their superior ability to offer abundant and instantaneous ground truth information. One of the active RS-Image approaches is the RS-Image recommendation from the Internet for meeting the user's queried Area-of-Interest (AOI). Although a number of studies on RS-Image ranking and recommendation have been proposed, most of them only consider the spatial distance between RS-Image and AOI. It is inappropriate since both of the RS-Image and AOI not only have the spatial information but also the cover range information. In this paper, we propose a novel framework named Location-based rs-Image Finding Engine (LIFE) to rank and recommend a series of relevant RS-Images to users according to the user-specific AOI. In LIFE, we first propose a cluster-based RS-Image index structure to efficiently maintain the large amount of RS-Images. Then, two quantitative indicators named Available Space (AS) and Image Extension (IE) are proposed to measure the Extensibility and Centrality between RS-Image and AOI, respectively. To our best knowledge, this is the first work on RS-Image recommendation that considers the issues of extensibility and centrality simultaneously. Through comprehensive experimental evaluations, the experiment result shows that both indicators have their own distinguished ranking behaviors and are able to successfully recommend meaningful RS-Image results. Besides, the experimental results show that the proposed LIFE framework outperforms the state-of-the-art approach Hausdorff in terms of Precision, Recall and Normalized Discounted Cumulative Gain (NDCG).

Original languageEnglish
Pages (from-to)151-166
Number of pages16
JournalJournal of Systems and Software
Volume90
Issue number1
DOIs
Publication statusPublished - 2014 Jan 20

All Science Journal Classification (ASJC) codes

  • Software
  • Information Systems
  • Hardware and Architecture

Fingerprint Dive into the research topics of 'A recommendation framework for remote sensing images by spatial relation analysis'. Together they form a unique fingerprint.

Cite this