TY - JOUR
T1 - A review on the environmental fate models for predicting the distribution of engineered nanomaterials in surface waters
AU - Suhendra, Edward
AU - Chang, Chih Hua
AU - Hou, Wen Che
AU - Hsieh, Yi Chin
N1 - Funding Information:
Financial support provided by the Ministry of Science and Technology (MOST) of Taiwan under grant number MOST 109-2923-E-006-003-MY4 is acknowledged. The paper is a part of the European Union Horizon 2020 project NanoInformaTIX (Grant agreement ID: 814426).
Publisher Copyright:
© MDPI AG. All rights reserved.
PY - 2020/6
Y1 - 2020/6
N2 - Exposure assessment is a key component in the risk assessment of engineered nanomaterials (ENMs). While direct and quantitative measurements of ENMs in complex environmental matrices remain challenging, environmental fate models (EFMs) can be used alternatively for estimating ENMs’ distributions in the environment. This review describes and assesses the development and capability of EFMs, focusing on surface waters. Our review finds that current engineered nanomaterial (ENM) exposure models can be largely classified into three types: material flow analysis models (MFAMs), multimedia compartmental models (MCMs), and spatial river/watershed models (SRWMs). MFAMs, which is already used to derive predicted environmental concentrations (PECs), can be used to estimate the releases of ENMs as inputs to EFMs. Both MCMs and SRWMs belong to EFMs. MCMs are spatially and/or temporally averaged models, which describe ENM fate processes as intermedia transfer of well-mixed environmental compartments. SRWMs are spatiotemporally resolved models, which consider the variability in watershed and/or stream hydrology, morphology, and sediment transport of river networks. As the foundation of EFMs, we also review the existing and emerging ENM fate processes and their inclusion in recent EFMs. We find that while ENM fate processes, such as heteroaggregation and dissolution, are commonly included in current EFMs, few models consider photoreaction and sulfidation, evaluation of the relative importance of fate processes, and the fate of weathered/transformed ENMs. We conclude the review by identifying the opportunities and challenges in using EFMs for ENMs.
AB - Exposure assessment is a key component in the risk assessment of engineered nanomaterials (ENMs). While direct and quantitative measurements of ENMs in complex environmental matrices remain challenging, environmental fate models (EFMs) can be used alternatively for estimating ENMs’ distributions in the environment. This review describes and assesses the development and capability of EFMs, focusing on surface waters. Our review finds that current engineered nanomaterial (ENM) exposure models can be largely classified into three types: material flow analysis models (MFAMs), multimedia compartmental models (MCMs), and spatial river/watershed models (SRWMs). MFAMs, which is already used to derive predicted environmental concentrations (PECs), can be used to estimate the releases of ENMs as inputs to EFMs. Both MCMs and SRWMs belong to EFMs. MCMs are spatially and/or temporally averaged models, which describe ENM fate processes as intermedia transfer of well-mixed environmental compartments. SRWMs are spatiotemporally resolved models, which consider the variability in watershed and/or stream hydrology, morphology, and sediment transport of river networks. As the foundation of EFMs, we also review the existing and emerging ENM fate processes and their inclusion in recent EFMs. We find that while ENM fate processes, such as heteroaggregation and dissolution, are commonly included in current EFMs, few models consider photoreaction and sulfidation, evaluation of the relative importance of fate processes, and the fate of weathered/transformed ENMs. We conclude the review by identifying the opportunities and challenges in using EFMs for ENMs.
UR - http://www.scopus.com/inward/record.url?scp=85087417458&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85087417458&partnerID=8YFLogxK
U2 - 10.3390/ijms21124554
DO - 10.3390/ijms21124554
M3 - Article
C2 - 32604975
AN - SCOPUS:85087417458
SN - 1661-6596
VL - 21
SP - 1
EP - 19
JO - International journal of molecular sciences
JF - International journal of molecular sciences
IS - 12
M1 - 4554
ER -