A simultaneous optimization approach to generate design specifications and maintenance policies for the multilayer protective systems in chemical processes

Kuo Hwa Liang, Chuei Tin Chang

Research output: Contribution to journalArticlepeer-review

12 Citations (Scopus)

Abstract

Generally speaking, a protective system is adopted to perform two basic functions, i.e., alarm and shutdown. The subsystem to perform the former function is equipped with one or more independent sensors. On the basis of the online measurements of these sensors, Boolean logic is applied to determine whether or not alarm signal(s) should be issued. The subsystem for the latter task is usually configured with solenoid valves. In response to the aforementioned signal(s), diese valves are energized (or de-energized) to carry out tiie required shutdown operation. Since the hardware failures are basically random events, die reliability (or availability) of a protective system is highly dependent upon its structural characteristics and also maintenance policies. Traditionally, the alarm logic and shutdown configuration are synthesized according to experience and the maintenance scheme is also established on an ad hoc basis. The aim of this study is to develop an integrated mathematical programming model to minimize the total expected expenditure, i.e., die sum of the capital investments, the expected maintenance costs, and die expected losses due to system failures. From the optimal solution, one should be able to produce the design specifications for every protection layer, i.e., (1) the number of sensors and the corresponding alarm logic, (2) die number of valves and die corresponding shutdown configuration, and (3) the needed repair/replacement policies. In this work, the sensors and valves are assumed to be maintained respectively with the corrective and preventive strategies. Thus, the optimal number of spare sensors stored offline and the best inspection interval for each valve can also be determined by solving this model. Extensive case studies have been carried out to demonstrate the feasibility and effectiveness of die proposed approach.

Original languageEnglish
Pages (from-to)5543-5555
Number of pages13
JournalIndustrial and Engineering Chemistry Research
Volume47
Issue number15
DOIs
Publication statusPublished - 2008 Aug 6

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Chemical Engineering(all)
  • Industrial and Manufacturing Engineering

Fingerprint Dive into the research topics of 'A simultaneous optimization approach to generate design specifications and maintenance policies for the multilayer protective systems in chemical processes'. Together they form a unique fingerprint.

Cite this