TY - JOUR
T1 - A study of the evaluation of products by industrial design students
AU - Lin, Hsin Hung
AU - Hsiao, Shih Wen
N1 - Publisher Copyright:
© Authors.
PY - 2018
Y1 - 2018
N2 - The objective of this study is to provide industrial design students with a comprehensive approach of product evaluation during the course of a research project. During the design evaluation stage, a student often encounters vague information since the attributes of product design demands are usually not quantifiable. Therefore, one of the important topics during the product development processes is to allow a student to carry out design evaluations effectively. The fuzzy Analytic Hierarchy Process (AHP) was utilized in this study to assess product designs and resolve the problems that might occur during product assessments. The purposive sampling technique was used in the questionnaire survey. By assigning a weighted value to each of the evaluation criteria, the case study verified the feasibility of the proposed design approach in fan designs. A total of 52 questionnaire copies were distributed. 36 copies of them were collected and the return rate is 77%. Among them, 28 copies were from the engineers and 8 copies were from people in the relevant industries. 22 copies were from males and this accounts for 61%. On the other hand, 14 copies were from females and this accounts for 39%. The results indicated that the weight of efficiency which is the secondary constituent element is the highest. Under the constituent element of efficiency, the weight of fan flow rate is 0.592 which is the highest. The defuzzification of efficiency is 0.744 which is the optimal value among the indices of various factors. The defuzzified value of Design No.4 after defuzzification is 0.682 which is the optimal one among four design candidates. The results of this study demonstrated the feasibility of the proposed design approach. New fan styles can be effectively created by implementing this design approach. This approach allows the entire evaluation process to be more precise. The combination of these approaches is not only practical and objective, but also is capable of assisting a student in making a decision under complicated and uncertain circumstances. This makes a design task definite and better clarified and also enhances a student's learning competitiveness by supplying a good reference during the follow-up stage of product design assessments.
AB - The objective of this study is to provide industrial design students with a comprehensive approach of product evaluation during the course of a research project. During the design evaluation stage, a student often encounters vague information since the attributes of product design demands are usually not quantifiable. Therefore, one of the important topics during the product development processes is to allow a student to carry out design evaluations effectively. The fuzzy Analytic Hierarchy Process (AHP) was utilized in this study to assess product designs and resolve the problems that might occur during product assessments. The purposive sampling technique was used in the questionnaire survey. By assigning a weighted value to each of the evaluation criteria, the case study verified the feasibility of the proposed design approach in fan designs. A total of 52 questionnaire copies were distributed. 36 copies of them were collected and the return rate is 77%. Among them, 28 copies were from the engineers and 8 copies were from people in the relevant industries. 22 copies were from males and this accounts for 61%. On the other hand, 14 copies were from females and this accounts for 39%. The results indicated that the weight of efficiency which is the secondary constituent element is the highest. Under the constituent element of efficiency, the weight of fan flow rate is 0.592 which is the highest. The defuzzification of efficiency is 0.744 which is the optimal value among the indices of various factors. The defuzzified value of Design No.4 after defuzzification is 0.682 which is the optimal one among four design candidates. The results of this study demonstrated the feasibility of the proposed design approach. New fan styles can be effectively created by implementing this design approach. This approach allows the entire evaluation process to be more precise. The combination of these approaches is not only practical and objective, but also is capable of assisting a student in making a decision under complicated and uncertain circumstances. This makes a design task definite and better clarified and also enhances a student's learning competitiveness by supplying a good reference during the follow-up stage of product design assessments.
UR - http://www.scopus.com/inward/record.url?scp=85034998813&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85034998813&partnerID=8YFLogxK
U2 - 10.12973/ejmste/79652
DO - 10.12973/ejmste/79652
M3 - Article
AN - SCOPUS:85034998813
SN - 1305-8215
VL - 14
SP - 239
EP - 254
JO - Eurasia Journal of Mathematics, Science and Technology Education
JF - Eurasia Journal of Mathematics, Science and Technology Education
IS - 1
ER -