A study on the diffuse mechanism and the barrier property of copper manganese alloy on tantalum

Ying Sen Su, Wen Hsi Lee, Shih Chieh Chang, Ying Lang Wang

Research output: Contribution to journalArticlepeer-review

Abstract

In this paper, the electrical and material properties of CuMn/silicon oxide (SiO2) and CuMn/tantalum (Ta)/SiO2 were investigated, and an optimized concentration of Mn in the CuMn alloy as barrier layers in these two structures was also determined. CuMn alloy ( $0\sim 10$ atomic % Mn) deposited on SiO2 and Ta were used in this paper. A diffusion barrier layer self-formed at the interface during annealing, and the growth behavior was found to follow a logarithmic rate law. The microstructures of the CuMn films were analyzed by transmission electron microscopy and could be correlated with the electrical properties of the CuMn films. After thermal treatment, only Cu-5 at.% Mn/ SiO2 successfully avoided the diffusion of Cu atoms. Thermal stability of the films grown on Ta/SiO2 was found to be better than that on SiO2. When a Ta layer was added, the Mn atoms diffused not only to the interface, but also to the grain boundaries in the Ta layer and the interface between Ta and SiO2. This phenomenon could be explained by the surface energy. As the thickness of CuMn shrunk from 150 to 50 nm and the sample was covered with a 100-nm-thick Cu layer, the amount of Mn atoms increased at the interface of CuMn/Ta. This is because the Cu layer had higher chemical potential which induced the Mn atoms to move toward the Ta layer and reduced the amount of Mn atoms in Cu after heat treatment.

Original languageEnglish
Article number6912929
Pages (from-to)284-290
Number of pages7
JournalIEEE Journal of the Electron Devices Society
Volume3
Issue number3
DOIs
Publication statusPublished - 2015 May 1

All Science Journal Classification (ASJC) codes

  • Biotechnology
  • Electronic, Optical and Magnetic Materials
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'A study on the diffuse mechanism and the barrier property of copper manganese alloy on tantalum'. Together they form a unique fingerprint.

Cite this