A three-dimensional self-assembled SnS2-nano-dots@graphene hybrid aerogel as an efficient polysulfide reservoir for high-performance lithium-sulfur batteries

Liu Luo, Sheng Heng Chung, Arumugam Manthiram

Research output: Contribution to journalArticle

21 Citations (Scopus)

Abstract

Reliable sulfur cathodes hold the key to realizing high-performance lithium-sulfur (Li-S) batteries, yet the electrochemical inefficiency and instability arising from the poor conductivity of sulfur and lithium sulfide together with polysulfide diffusion present challenges. We present here a new three-dimensional graphene aerogel embedded with in situ grown SnS2 nano-dots (SnS2-ND@G) as an efficient sulfur host. First, benefiting from a highly conductive, hierarchically porous, and mechanically self-supported architecture, the SnS2-ND@G aerogel enables the cathode to hold high sulfur content (75 wt%) and loading (up to 10 mg cm-2). Both values exceed most of the reported metal-compound-related cathode work (<60 wt% sulfur content and <3 mg cm-2 sulfur loading) in the literature. Second, this work takes advantage of a facile one-pot self-assembly fabrication, effectively guaranteeing a homogeneous deposition of SnS2 nano-dots in the graphene aerogel with a small amount of SnS2 (16 wt%). It greatly overcomes the shortcomings of physical incorporation methods to make metal-compound/carbon substrates reported in previous studies. More importantly, by rationally combining the physical entrapment from graphene and chemical adsorptivity from SnS2 nano-dots towards polysulfides, the SnS2-ND@G aerogel demonstrates remarkably improved polysulfide-trapping capability and electrochemical stability. As a result, a high peak capacity of 1234 mA h g-1, a high reversible capacity of 1016 mA h g-1 after 300 cycles, exceptional rate capability (C/10-3C rates), and impressive areal capacity (up to 11 mA h cm-2) are achieved. This work provides a viable path to integrate a conductive graphene network and nano-sized SnS2 as a promising cathode substrate for developing advanced Li-S batteries.

Original languageEnglish
Pages (from-to)7659-7667
Number of pages9
JournalJournal of Materials Chemistry A
Volume6
Issue number17
DOIs
Publication statusPublished - 2018 Jan 1

Fingerprint

Polysulfides
Aerogels
Graphite
Sulfur
Graphene
Cathodes
Metals
Substrates
Self assembly
Lithium sulfur batteries
polysulfide
Lithium
Carbon
Fabrication

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Renewable Energy, Sustainability and the Environment
  • Materials Science(all)

Cite this

@article{194fc30499f247f789bf91da1aebec5f,
title = "A three-dimensional self-assembled SnS2-nano-dots@graphene hybrid aerogel as an efficient polysulfide reservoir for high-performance lithium-sulfur batteries",
abstract = "Reliable sulfur cathodes hold the key to realizing high-performance lithium-sulfur (Li-S) batteries, yet the electrochemical inefficiency and instability arising from the poor conductivity of sulfur and lithium sulfide together with polysulfide diffusion present challenges. We present here a new three-dimensional graphene aerogel embedded with in situ grown SnS2 nano-dots (SnS2-ND@G) as an efficient sulfur host. First, benefiting from a highly conductive, hierarchically porous, and mechanically self-supported architecture, the SnS2-ND@G aerogel enables the cathode to hold high sulfur content (75 wt{\%}) and loading (up to 10 mg cm-2). Both values exceed most of the reported metal-compound-related cathode work (<60 wt{\%} sulfur content and <3 mg cm-2 sulfur loading) in the literature. Second, this work takes advantage of a facile one-pot self-assembly fabrication, effectively guaranteeing a homogeneous deposition of SnS2 nano-dots in the graphene aerogel with a small amount of SnS2 (16 wt{\%}). It greatly overcomes the shortcomings of physical incorporation methods to make metal-compound/carbon substrates reported in previous studies. More importantly, by rationally combining the physical entrapment from graphene and chemical adsorptivity from SnS2 nano-dots towards polysulfides, the SnS2-ND@G aerogel demonstrates remarkably improved polysulfide-trapping capability and electrochemical stability. As a result, a high peak capacity of 1234 mA h g-1, a high reversible capacity of 1016 mA h g-1 after 300 cycles, exceptional rate capability (C/10-3C rates), and impressive areal capacity (up to 11 mA h cm-2) are achieved. This work provides a viable path to integrate a conductive graphene network and nano-sized SnS2 as a promising cathode substrate for developing advanced Li-S batteries.",
author = "Liu Luo and Chung, {Sheng Heng} and Arumugam Manthiram",
year = "2018",
month = "1",
day = "1",
doi = "10.1039/c8ta01089g",
language = "English",
volume = "6",
pages = "7659--7667",
journal = "Journal of Materials Chemistry A",
issn = "2050-7488",
publisher = "Royal Society of Chemistry",
number = "17",

}

TY - JOUR

T1 - A three-dimensional self-assembled SnS2-nano-dots@graphene hybrid aerogel as an efficient polysulfide reservoir for high-performance lithium-sulfur batteries

AU - Luo, Liu

AU - Chung, Sheng Heng

AU - Manthiram, Arumugam

PY - 2018/1/1

Y1 - 2018/1/1

N2 - Reliable sulfur cathodes hold the key to realizing high-performance lithium-sulfur (Li-S) batteries, yet the electrochemical inefficiency and instability arising from the poor conductivity of sulfur and lithium sulfide together with polysulfide diffusion present challenges. We present here a new three-dimensional graphene aerogel embedded with in situ grown SnS2 nano-dots (SnS2-ND@G) as an efficient sulfur host. First, benefiting from a highly conductive, hierarchically porous, and mechanically self-supported architecture, the SnS2-ND@G aerogel enables the cathode to hold high sulfur content (75 wt%) and loading (up to 10 mg cm-2). Both values exceed most of the reported metal-compound-related cathode work (<60 wt% sulfur content and <3 mg cm-2 sulfur loading) in the literature. Second, this work takes advantage of a facile one-pot self-assembly fabrication, effectively guaranteeing a homogeneous deposition of SnS2 nano-dots in the graphene aerogel with a small amount of SnS2 (16 wt%). It greatly overcomes the shortcomings of physical incorporation methods to make metal-compound/carbon substrates reported in previous studies. More importantly, by rationally combining the physical entrapment from graphene and chemical adsorptivity from SnS2 nano-dots towards polysulfides, the SnS2-ND@G aerogel demonstrates remarkably improved polysulfide-trapping capability and electrochemical stability. As a result, a high peak capacity of 1234 mA h g-1, a high reversible capacity of 1016 mA h g-1 after 300 cycles, exceptional rate capability (C/10-3C rates), and impressive areal capacity (up to 11 mA h cm-2) are achieved. This work provides a viable path to integrate a conductive graphene network and nano-sized SnS2 as a promising cathode substrate for developing advanced Li-S batteries.

AB - Reliable sulfur cathodes hold the key to realizing high-performance lithium-sulfur (Li-S) batteries, yet the electrochemical inefficiency and instability arising from the poor conductivity of sulfur and lithium sulfide together with polysulfide diffusion present challenges. We present here a new three-dimensional graphene aerogel embedded with in situ grown SnS2 nano-dots (SnS2-ND@G) as an efficient sulfur host. First, benefiting from a highly conductive, hierarchically porous, and mechanically self-supported architecture, the SnS2-ND@G aerogel enables the cathode to hold high sulfur content (75 wt%) and loading (up to 10 mg cm-2). Both values exceed most of the reported metal-compound-related cathode work (<60 wt% sulfur content and <3 mg cm-2 sulfur loading) in the literature. Second, this work takes advantage of a facile one-pot self-assembly fabrication, effectively guaranteeing a homogeneous deposition of SnS2 nano-dots in the graphene aerogel with a small amount of SnS2 (16 wt%). It greatly overcomes the shortcomings of physical incorporation methods to make metal-compound/carbon substrates reported in previous studies. More importantly, by rationally combining the physical entrapment from graphene and chemical adsorptivity from SnS2 nano-dots towards polysulfides, the SnS2-ND@G aerogel demonstrates remarkably improved polysulfide-trapping capability and electrochemical stability. As a result, a high peak capacity of 1234 mA h g-1, a high reversible capacity of 1016 mA h g-1 after 300 cycles, exceptional rate capability (C/10-3C rates), and impressive areal capacity (up to 11 mA h cm-2) are achieved. This work provides a viable path to integrate a conductive graphene network and nano-sized SnS2 as a promising cathode substrate for developing advanced Li-S batteries.

UR - http://www.scopus.com/inward/record.url?scp=85046464324&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85046464324&partnerID=8YFLogxK

U2 - 10.1039/c8ta01089g

DO - 10.1039/c8ta01089g

M3 - Article

AN - SCOPUS:85046464324

VL - 6

SP - 7659

EP - 7667

JO - Journal of Materials Chemistry A

JF - Journal of Materials Chemistry A

SN - 2050-7488

IS - 17

ER -