A weather-based hybrid method for 1-day ahead hourly forecasting of PV power output

Hong Tzer Yang, Chao Ming Huang, Yann Chang Huang, Yi Shiang Pai

Research output: Contribution to journalArticlepeer-review

424 Citations (Scopus)

Abstract

To improve real-time control performance and reduce possible negative impacts of photovoltaic (PV) systems, an accurate forecasting of PV output is required, which is an important function in the operation of an energy management system (EMS) for distributed energy resources. In this paper, a weather-based hybrid method for 1-day ahead hourly forecasting of PV power output is presented. The proposed approach comprises classification, training, and forecasting stages. In the classification stage, the self-organizing map (SOM) and learning vector quantization (LVQ) networks are used to classify the collected historical data of PV power output. The training stage employs the support vector regression (SVR) to train the input/output data sets for temperature, probability of precipitation, and solar irradiance of defined similar hours. In the forecasting stage, the fuzzy inference method is used to select an adequate trained model for accurate forecast, according to the weather information collected from Taiwan Central Weather Bureau (TCWB). The proposed approach is applied to a practical PV power generation system. Numerical results show that the proposed approach achieves better prediction accuracy than the simple SVR and traditional ANN methods.

Original languageEnglish
Article number6802349
Pages (from-to)917-926
Number of pages10
JournalIEEE Transactions on Sustainable Energy
Volume5
Issue number3
DOIs
Publication statusPublished - 2014 Jul

All Science Journal Classification (ASJC) codes

  • Renewable Energy, Sustainability and the Environment

Fingerprint

Dive into the research topics of 'A weather-based hybrid method for 1-day ahead hourly forecasting of PV power output'. Together they form a unique fingerprint.

Cite this