Ability of naringenin, a bioflavonoid, to activate M-type potassium current in motor neuron-like cells and to increase BKCa-channel activity in HEK293T cells transfected with α-hSlo subunit

Hung Te Hsu, Yu Ting Tseng, Yi Ching Lo, Sheng-Nan Wu

Research output: Contribution to journalArticle

12 Citations (Scopus)

Abstract

Naringenin (NGEN) is a citrus bioflavonoid known to have beneficial health properties; however, the ionic mechanism of its actions remains largely unclear. In this study, we attempted to evaluate the possible effects of NGEN on K+ currents in NSC-34 neuronal cells and in HEK293T cells expressing α-hSlo. Results: NGEN increased M-type K+ current (IK(M)) in a concentration-dependent manner with an EC50 value of 9.8 μM in NSC-34 cells. NGEN shifted the activation curve of IK(M) conductance to the more negative potentials. In cell-attached recordings, NGEN or flupirtine enhanced the activity of M-type K+ (KM) channels with no changes in single-channel amplitude. NGEN (10 μM) had minimal effect on erg-mediated K+ currents. Under cell-attached voltage-clamp recordings, NGEN decreased the frequency of spontaneous action currents and further application of linopirdine can reverse NGEN-induced inhibition of firing. In HEK293T cells expressing α-hSlo, this compound increased the amplitude of Ca2+-activated K+ current (IK(Ca)). Under inside-out recordings, NGEN applied to the intracellular side of the detached patch enhanced the activity of large-conductance Ca2+-activated K+ (BKCa) channels. Moreover, from the study of a modeled neuron, burst firing of simulated action potentials (APs) was reduced in the presence of the increased conductances of both KM and KCa channels. Fast-slow analysis of AP bursting from this model also revealed that as the conductances of both KM and BKCa channels were increased by two-fold, the voltage nullcline was shifted in an upward direction accompanied by the compression of burst trajectory. Conclusions: The present results demonstrate that activation of both KM and BKCa channels caused by NGEN might combine to influence neuronal activity if similar channels were functionally co-expressed in central neurons in vivo.

Original languageEnglish
Article number135
JournalBMC Neuroscience
Volume15
Issue number1
DOIs
Publication statusPublished - 2014 Dec 24

Fingerprint

Motor Neurons
Flavonoids
Potassium
linopirdine
flupirtine
Action Potentials
naringenin
Neurons
Calcium-Activated Potassium Channels
Citrus
Health

All Science Journal Classification (ASJC) codes

  • Neuroscience(all)
  • Cellular and Molecular Neuroscience

Cite this

@article{0c65818161914150b94a79a1c625ab7d,
title = "Ability of naringenin, a bioflavonoid, to activate M-type potassium current in motor neuron-like cells and to increase BKCa-channel activity in HEK293T cells transfected with α-hSlo subunit",
abstract = "Naringenin (NGEN) is a citrus bioflavonoid known to have beneficial health properties; however, the ionic mechanism of its actions remains largely unclear. In this study, we attempted to evaluate the possible effects of NGEN on K+ currents in NSC-34 neuronal cells and in HEK293T cells expressing α-hSlo. Results: NGEN increased M-type K+ current (IK(M)) in a concentration-dependent manner with an EC50 value of 9.8 μM in NSC-34 cells. NGEN shifted the activation curve of IK(M) conductance to the more negative potentials. In cell-attached recordings, NGEN or flupirtine enhanced the activity of M-type K+ (KM) channels with no changes in single-channel amplitude. NGEN (10 μM) had minimal effect on erg-mediated K+ currents. Under cell-attached voltage-clamp recordings, NGEN decreased the frequency of spontaneous action currents and further application of linopirdine can reverse NGEN-induced inhibition of firing. In HEK293T cells expressing α-hSlo, this compound increased the amplitude of Ca2+-activated K+ current (IK(Ca)). Under inside-out recordings, NGEN applied to the intracellular side of the detached patch enhanced the activity of large-conductance Ca2+-activated K+ (BKCa) channels. Moreover, from the study of a modeled neuron, burst firing of simulated action potentials (APs) was reduced in the presence of the increased conductances of both KM and KCa channels. Fast-slow analysis of AP bursting from this model also revealed that as the conductances of both KM and BKCa channels were increased by two-fold, the voltage nullcline was shifted in an upward direction accompanied by the compression of burst trajectory. Conclusions: The present results demonstrate that activation of both KM and BKCa channels caused by NGEN might combine to influence neuronal activity if similar channels were functionally co-expressed in central neurons in vivo.",
author = "Hsu, {Hung Te} and Tseng, {Yu Ting} and Lo, {Yi Ching} and Sheng-Nan Wu",
year = "2014",
month = "12",
day = "24",
doi = "10.1186/s12868-014-0135-1",
language = "English",
volume = "15",
journal = "BMC Neuroscience",
issn = "1471-2202",
publisher = "BioMed Central",
number = "1",

}

TY - JOUR

T1 - Ability of naringenin, a bioflavonoid, to activate M-type potassium current in motor neuron-like cells and to increase BKCa-channel activity in HEK293T cells transfected with α-hSlo subunit

AU - Hsu, Hung Te

AU - Tseng, Yu Ting

AU - Lo, Yi Ching

AU - Wu, Sheng-Nan

PY - 2014/12/24

Y1 - 2014/12/24

N2 - Naringenin (NGEN) is a citrus bioflavonoid known to have beneficial health properties; however, the ionic mechanism of its actions remains largely unclear. In this study, we attempted to evaluate the possible effects of NGEN on K+ currents in NSC-34 neuronal cells and in HEK293T cells expressing α-hSlo. Results: NGEN increased M-type K+ current (IK(M)) in a concentration-dependent manner with an EC50 value of 9.8 μM in NSC-34 cells. NGEN shifted the activation curve of IK(M) conductance to the more negative potentials. In cell-attached recordings, NGEN or flupirtine enhanced the activity of M-type K+ (KM) channels with no changes in single-channel amplitude. NGEN (10 μM) had minimal effect on erg-mediated K+ currents. Under cell-attached voltage-clamp recordings, NGEN decreased the frequency of spontaneous action currents and further application of linopirdine can reverse NGEN-induced inhibition of firing. In HEK293T cells expressing α-hSlo, this compound increased the amplitude of Ca2+-activated K+ current (IK(Ca)). Under inside-out recordings, NGEN applied to the intracellular side of the detached patch enhanced the activity of large-conductance Ca2+-activated K+ (BKCa) channels. Moreover, from the study of a modeled neuron, burst firing of simulated action potentials (APs) was reduced in the presence of the increased conductances of both KM and KCa channels. Fast-slow analysis of AP bursting from this model also revealed that as the conductances of both KM and BKCa channels were increased by two-fold, the voltage nullcline was shifted in an upward direction accompanied by the compression of burst trajectory. Conclusions: The present results demonstrate that activation of both KM and BKCa channels caused by NGEN might combine to influence neuronal activity if similar channels were functionally co-expressed in central neurons in vivo.

AB - Naringenin (NGEN) is a citrus bioflavonoid known to have beneficial health properties; however, the ionic mechanism of its actions remains largely unclear. In this study, we attempted to evaluate the possible effects of NGEN on K+ currents in NSC-34 neuronal cells and in HEK293T cells expressing α-hSlo. Results: NGEN increased M-type K+ current (IK(M)) in a concentration-dependent manner with an EC50 value of 9.8 μM in NSC-34 cells. NGEN shifted the activation curve of IK(M) conductance to the more negative potentials. In cell-attached recordings, NGEN or flupirtine enhanced the activity of M-type K+ (KM) channels with no changes in single-channel amplitude. NGEN (10 μM) had minimal effect on erg-mediated K+ currents. Under cell-attached voltage-clamp recordings, NGEN decreased the frequency of spontaneous action currents and further application of linopirdine can reverse NGEN-induced inhibition of firing. In HEK293T cells expressing α-hSlo, this compound increased the amplitude of Ca2+-activated K+ current (IK(Ca)). Under inside-out recordings, NGEN applied to the intracellular side of the detached patch enhanced the activity of large-conductance Ca2+-activated K+ (BKCa) channels. Moreover, from the study of a modeled neuron, burst firing of simulated action potentials (APs) was reduced in the presence of the increased conductances of both KM and KCa channels. Fast-slow analysis of AP bursting from this model also revealed that as the conductances of both KM and BKCa channels were increased by two-fold, the voltage nullcline was shifted in an upward direction accompanied by the compression of burst trajectory. Conclusions: The present results demonstrate that activation of both KM and BKCa channels caused by NGEN might combine to influence neuronal activity if similar channels were functionally co-expressed in central neurons in vivo.

UR - http://www.scopus.com/inward/record.url?scp=84924035835&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84924035835&partnerID=8YFLogxK

U2 - 10.1186/s12868-014-0135-1

DO - 10.1186/s12868-014-0135-1

M3 - Article

C2 - 25539574

AN - SCOPUS:84924035835

VL - 15

JO - BMC Neuroscience

JF - BMC Neuroscience

SN - 1471-2202

IS - 1

M1 - 135

ER -