TY - JOUR
T1 - Accurate numerical simulations of capillary underfill process for flip-chip packages
AU - Cheng, Yu Chi
AU - Chen, Yu Hsien
AU - Hung, Hao Hsi
AU - Hwang, Sheng Jye
AU - Chen, Dao Long
AU - Chang, Hui Jing
AU - Huang, Bing Yuan
AU - Huang, Hung Hsien
AU - Wang, Chen Chao
AU - Hung, Chih Pin
N1 - Publisher Copyright:
© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024.
PY - 2024
Y1 - 2024
N2 - In the capillary underfill packaging process, resin with specific characteristics such as low viscosity, high flowability, fast curing, and high reliability is utilized to fill the gaps between the substrate and the die. This underfill resin serves to reinforce the connections between metal bumps and the substrate, thereby extending the lifespan and enhancing the reliability of FCBGA (Flip-Chip Ball Grid Array) packages. Despite the availability of flow simulation tools, the development of the underfill process remains a significant challenge for engineers due to the multitude of control parameters involved. The objective of this study is to identify the key factors influencing the accuracy of underfill flow simulations and explore potential solutions to these challenges. In this study, it is found that necessary ingredients for accurate underfill simulation need to include the following items: 1. Good flow simulation software 2. Accurately measured material properties 3. Good and fine mesh 4. Right amount of dispensed resin 5. Right timing for resin dispensing. The accuracy of the simulation is particularly affected by factors such as overflowing, resin climbing, non-uniform flow, and air trapping, which are influenced by the amount and timing of resin dispensing. By addressing these factors, this study demonstrates that accurate underfill simulation can be achieved, providing valuable insights into microscale flip-chip underfill physics. This research lays the groundwork for the development of validated models applicable to next-generation high-density flip-chip products.
AB - In the capillary underfill packaging process, resin with specific characteristics such as low viscosity, high flowability, fast curing, and high reliability is utilized to fill the gaps between the substrate and the die. This underfill resin serves to reinforce the connections between metal bumps and the substrate, thereby extending the lifespan and enhancing the reliability of FCBGA (Flip-Chip Ball Grid Array) packages. Despite the availability of flow simulation tools, the development of the underfill process remains a significant challenge for engineers due to the multitude of control parameters involved. The objective of this study is to identify the key factors influencing the accuracy of underfill flow simulations and explore potential solutions to these challenges. In this study, it is found that necessary ingredients for accurate underfill simulation need to include the following items: 1. Good flow simulation software 2. Accurately measured material properties 3. Good and fine mesh 4. Right amount of dispensed resin 5. Right timing for resin dispensing. The accuracy of the simulation is particularly affected by factors such as overflowing, resin climbing, non-uniform flow, and air trapping, which are influenced by the amount and timing of resin dispensing. By addressing these factors, this study demonstrates that accurate underfill simulation can be achieved, providing valuable insights into microscale flip-chip underfill physics. This research lays the groundwork for the development of validated models applicable to next-generation high-density flip-chip products.
UR - http://www.scopus.com/inward/record.url?scp=85200361781&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85200361781&partnerID=8YFLogxK
U2 - 10.1007/s00366-024-02022-x
DO - 10.1007/s00366-024-02022-x
M3 - Article
AN - SCOPUS:85200361781
SN - 0177-0667
JO - Engineering with Computers
JF - Engineering with Computers
ER -