Acute effects of fine particulate matter constituents on mortality: A systematic review and meta-regression analysis

Souzana Achilleos, Marianthi Anna Kioumourtzoglou, Chih Da Wu, Joel D. Schwartz, Petros Koutrakis, Stefania I. Papatheodorou

Research output: Contribution to journalReview articlepeer-review

87 Citations (Scopus)

Abstract

Background The link between PM2.5 exposure and adverse health outcomes is well documented from studies across the world. However, the reported effect estimates vary across studies, locations and constituents. We aimed to conduct a meta-analysis on associations between short-term exposure to PM2.5 constituents and mortality using city-specific estimates, and explore factors that may explain some of the observed heterogeneity. Methods We systematically reviewed epidemiological studies on particle constituents and mortality using PubMed and Web of Science databases up to July 2015.We included studies that examined the association between short-term exposure to PM2.5 constituents and all-cause, cardiovascular, and respiratory mortality, in the general adult population. Each study was summarized based on pre-specified study key parameters (e.g., location, time period, population, diagnostic classification standard), and we evaluated the risk of bias using the Office of Health Assessment and Translation (OHAT) Method for each included study. We extracted city-specific mortality risk estimates for each constituent and cause of mortality. For multi-city studies, we requested the city-specific risk estimates from the authors unless reported in the article. We performed random effects meta-analyses using city-specific estimates, and examined whether the effects vary across regions and city characteristics (PM2.5 concentration levels, air temperature, elevation, vegetation, size of elderly population, population density, and baseline mortality). Results We found a 0.89% (95% CI: 0.68, 1.10%) increase in all-cause, a 0.80% (95% CI: 0.41, 1.20%) increase in cardiovascular, and a 1.10% (95% CI: 0.59, 1.62%) increase in respiratory mortality per 10 μg/m3 increase in PM2.5. Accounting for the downward bias induced by studies of single days, the all-cause mortality estimate increased to 1.01% (95% CI: 0.81, 1.20%). We found significant associations between mortality and several PM2.5 constituents. The most consistent and stronger associations were observed for elemental carbon (EC) and potassium (K). For most of the constituents, we observed high variability of effect estimates across cities. Conclusions Our meta-analysis suggests that (a) combustion elements such as EC and K have a stronger association with mortality, (b) single lag studies underestimate effects, and (c) estimates of PM2.5 and constituents differ across regions. Accounting for PM mass in constituent's health models may lead to more stable and comparable effect estimates across different studies. Systematic review registration PROSPERO: CRD42017055765.

Original languageEnglish
Pages (from-to)89-100
Number of pages12
JournalEnvironment International
Volume109
DOIs
Publication statusPublished - 2017

All Science Journal Classification (ASJC) codes

  • Environmental Science(all)

Fingerprint Dive into the research topics of 'Acute effects of fine particulate matter constituents on mortality: A systematic review and meta-regression analysis'. Together they form a unique fingerprint.

Cite this