Adaptive power allocation with quality-of-service guarantee in cognitive radio networks

Yanbo Ma, Haixia Zhang, Dongfeng Yuan, Hsiao Hwa Chen

Research output: Contribution to journalArticlepeer-review

21 Citations (Scopus)

Abstract

This paper proposes a novel power control policy for a cognitive radio network as an effort to maximize throughput under the average interference power constraint. The underlined policy ensures delay-related quality of service (QoS) requirements with reduced interference to the primary user. In this work we also take into account the peak and average transmit power constraints for the secondary user. An optimization problem associated with the power control policy is formulated based on a cross-layer framework, where the queue on data link layer is serviced by the power control policy at the physical layer. A recursive algorithm under the power constraints is developed to solve for the optimal solution. It is shown that the reduction of average interference to the primary user is related closely to the QoS requirements. The analysis derives the average interference power limits to the primary user in fading channels with guaranteed QoS requirements for the secondary user. The numerical results show the effectiveness of the proposed power control policy.

Original languageEnglish
Pages (from-to)1975-1982
Number of pages8
JournalComputer Communications
Volume32
Issue number18
DOIs
Publication statusPublished - 2009 Dec 15

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications

Fingerprint Dive into the research topics of 'Adaptive power allocation with quality-of-service guarantee in cognitive radio networks'. Together they form a unique fingerprint.

Cite this