TY - JOUR
T1 - Administration of N-Acetylcysteine to Regress the Fibrogenic and Proinflammatory Effects of Oxidative Stress in Hypertrophic Ligamentum Flavum Cells
AU - Hsu, Yu Chia
AU - Chuang, Hao Chun
AU - Tsai, Kun Ling
AU - Tu, Ting Yuan
AU - Shyong, Yan Jye
AU - Kuo, Cheng Hsiang
AU - Liu, Yuan Fu
AU - Shih, Shu Shien
AU - Lin, Cheng Li
N1 - Publisher Copyright:
© 2022 Yu-Chia Hsu et al.
PY - 2022
Y1 - 2022
N2 - Ligamentum flavum hypertrophy (LFH) is a major cause of lumbar spinal stenosis (LSS). In hypertrophic ligamentum flavum (LF) cells, oxidative stress activates intracellular signaling and induces the expression of inflammatory and fibrotic markers. This study explored whether healthy and hypertrophic LF cells respond differently to oxidative stress, via examining the levels of phosphorylated p38 (p-p38), inducible nitric oxide synthase (iNOS), and α-smooth muscle actin (α-SMA). Furthermore, the efficacy of N-acetylcysteine (NAC), an antioxidant, in reversing the fibrogenic and proinflammatory effects of oxidative stress in hypertrophic LF cells was investigated by assessing the expression levels of p-p38, p-p65, iNOS, TGF-β, α-SMA, vimentin, and collagen I under H2O2 treatment with or without NAC. Under oxidative stress, p-p38 increased significantly in both hypertrophic and healthy LF cells, and iNOS was elevated in only the hypertrophic LF cells. This revealed that oxidative stress negatively affected both hypertrophic and healthy LF cells, with the hypertrophic LF cells exhibiting more active inflammation than did the healthy cells. After H2O2 treatment, p-p38, p-p65, iNOS, TGF-β, vimentin, and collagen I increased significantly, and NAC administration reversed the effects of oxidative stress. These results can form the basis of a novel therapeutic treatment for LFH using antioxidants.
AB - Ligamentum flavum hypertrophy (LFH) is a major cause of lumbar spinal stenosis (LSS). In hypertrophic ligamentum flavum (LF) cells, oxidative stress activates intracellular signaling and induces the expression of inflammatory and fibrotic markers. This study explored whether healthy and hypertrophic LF cells respond differently to oxidative stress, via examining the levels of phosphorylated p38 (p-p38), inducible nitric oxide synthase (iNOS), and α-smooth muscle actin (α-SMA). Furthermore, the efficacy of N-acetylcysteine (NAC), an antioxidant, in reversing the fibrogenic and proinflammatory effects of oxidative stress in hypertrophic LF cells was investigated by assessing the expression levels of p-p38, p-p65, iNOS, TGF-β, α-SMA, vimentin, and collagen I under H2O2 treatment with or without NAC. Under oxidative stress, p-p38 increased significantly in both hypertrophic and healthy LF cells, and iNOS was elevated in only the hypertrophic LF cells. This revealed that oxidative stress negatively affected both hypertrophic and healthy LF cells, with the hypertrophic LF cells exhibiting more active inflammation than did the healthy cells. After H2O2 treatment, p-p38, p-p65, iNOS, TGF-β, vimentin, and collagen I increased significantly, and NAC administration reversed the effects of oxidative stress. These results can form the basis of a novel therapeutic treatment for LFH using antioxidants.
UR - http://www.scopus.com/inward/record.url?scp=85141408346&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85141408346&partnerID=8YFLogxK
U2 - 10.1155/2022/1380353
DO - 10.1155/2022/1380353
M3 - Article
C2 - 36338342
AN - SCOPUS:85141408346
SN - 1942-0900
VL - 2022
JO - Oxidative Medicine and Cellular Longevity
JF - Oxidative Medicine and Cellular Longevity
M1 - 1380353
ER -