Adsorption and Reaction Pathways of 1 H-1,2,3-Triazole on Cu(100) and O/Cu(100)

Shang Wei Chen, You Jyun Chen, Yun Hsien Chen, Guan Jie Chen, Sheng Hsun Chan, Jong Liang Lin

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)


The adsorption and reactions of 1H-1,2,3-triazole on Cu(100) and oxygen-precovered Cu(100) [O/Cu(100)] have been investigated using the combinative techniques of temperature-programmed reaction/desorption, X-ray photoelectron spectroscopy, reflection-absorption infrared spectroscopy, and near-edge X-ray absorption fine structure in addition to density functional theory calculations. Although the 1,2,3-triazole molecules may have 2H-tautomeric form, it is found that the 1H-form is predominantly adsorbed on Cu(100) at 120 K. The adsorbed 1H-1,2,3-triazole molecules interact with each other via hydrogen bonding. The triazole molecules on Cu(100) undergo N-H bond scission first to form nearly perpendicular 1,2,3-triazolate on the surface. H2 evolves below 350 K through two different mechanisms depending on the coverage. The triazolate on Cu(100) further decomposes to form H2, HCN, N2, and CH3CN at ∼550 K. The latter three products are generated by the triazole ring opening with preferential bond dissociation steps. On O/Cu(100), the triazole molecules deprotonate first by N-H breakage, forming H2O at ∼200 K but without H2 desorption below 350 K. The 1,2,3-triazolate reacts to generate H2, N2, H2O, CO, and CO2 at a lower temperature of ∼465 K in the presence of surface oxygen. C-C-N and/or C=N containing intermediates are likely to be formed on the surface from the triazole ring rupture and are suggested to be responsible for the formation of 1H-azirine or vinylideneamine.

Original languageEnglish
Pages (from-to)27412-27424
Number of pages13
JournalJournal of Physical Chemistry C
Issue number48
Publication statusPublished - 2018 Dec 6

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • General Energy
  • Physical and Theoretical Chemistry
  • Surfaces, Coatings and Films


Dive into the research topics of 'Adsorption and Reaction Pathways of 1 H-1,2,3-Triazole on Cu(100) and O/Cu(100)'. Together they form a unique fingerprint.

Cite this