TY - JOUR
T1 - Advancement of the artificial amorphous-crystalline structure of laser cladded FeCrMoCB on nickel-free stainless-steel for bone-implants
AU - Ibrahim, Mahmoud Z.
AU - Sarhan, Ahmed A.D.
AU - Kuo, T. Y.
AU - Hamdi, M.
AU - Yusof, Farazila
AU - Chien, C. S.
AU - Chang, C. P.
AU - Lee, T. M.
N1 - Publisher Copyright:
© 2019 Elsevier B.V.
PY - 2019/4/1
Y1 - 2019/4/1
N2 - This research proposes the development of amorphous-crystalline FeCrMoCB layer as a promising biomaterial for bone-implant applications. The FeCrMoCB amorphous powder was laser cladded on nickel-free stainless-steel (Cronidur30) using three laser specific energies (E s ) levels (31.8, 27.5 and 23.4 J/mm 2 ) to attain different amorphous contents. The amorphous-crystalline structure and the microstructure were investigated using X-ray diffraction and scanning electron microscope, respectively. Later, the corrosion rate and the wear rate in simulated body fluids (SBF) were evaluated to investigate the advancement of the artificial amorphous-crystalline structure of laser cladded FeCrMoCB metallic glass (MG) composite via electrochemical corrosion test and pin-on-disc test, respectively. The hardness and Young's modulus (E) were acquired using nanoindentation measurement while the cytocompatibility was evaluated by MTT assay using MC3T3 cell-lines. The material characterization showed that increasing of E s resulted in decreasing the amorphous phase and increasing the crystalline phase. The laser cladded FeCrMoCB MG composite showed significant enhancement of the corrosion and wear resistance in SBF implying longer implant service time. This advancement behavior is not only superior to the uncoated substrate, but also compared to other biomaterials including Zr-based MG, Ti6Al4V, and CoCrMo alloys in SBF. Finally, the FeCrMoCB MG composite showed an acceptable cytocompatibility behavior bringing promising enhanced characteristics for bone-implant material.
AB - This research proposes the development of amorphous-crystalline FeCrMoCB layer as a promising biomaterial for bone-implant applications. The FeCrMoCB amorphous powder was laser cladded on nickel-free stainless-steel (Cronidur30) using three laser specific energies (E s ) levels (31.8, 27.5 and 23.4 J/mm 2 ) to attain different amorphous contents. The amorphous-crystalline structure and the microstructure were investigated using X-ray diffraction and scanning electron microscope, respectively. Later, the corrosion rate and the wear rate in simulated body fluids (SBF) were evaluated to investigate the advancement of the artificial amorphous-crystalline structure of laser cladded FeCrMoCB metallic glass (MG) composite via electrochemical corrosion test and pin-on-disc test, respectively. The hardness and Young's modulus (E) were acquired using nanoindentation measurement while the cytocompatibility was evaluated by MTT assay using MC3T3 cell-lines. The material characterization showed that increasing of E s resulted in decreasing the amorphous phase and increasing the crystalline phase. The laser cladded FeCrMoCB MG composite showed significant enhancement of the corrosion and wear resistance in SBF implying longer implant service time. This advancement behavior is not only superior to the uncoated substrate, but also compared to other biomaterials including Zr-based MG, Ti6Al4V, and CoCrMo alloys in SBF. Finally, the FeCrMoCB MG composite showed an acceptable cytocompatibility behavior bringing promising enhanced characteristics for bone-implant material.
UR - http://www.scopus.com/inward/record.url?scp=85062153297&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85062153297&partnerID=8YFLogxK
U2 - 10.1016/j.matchemphys.2018.12.104
DO - 10.1016/j.matchemphys.2018.12.104
M3 - Article
AN - SCOPUS:85062153297
SN - 0254-0584
VL - 227
SP - 358
EP - 367
JO - Materials Chemistry and Physics
JF - Materials Chemistry and Physics
ER -