Aerodynamic design and analysis of a 10 kW horizontal-axis wind turbine for Tainan, Taiwan

Chi Jeng Bai, Po Wei Chen, Wei Cheng Wang

Research output: Contribution to journalArticlepeer-review

14 Citations (Scopus)


The purpose of the present study is to develop a small-scale horizontal-axis wind turbine (HAWT) suitable for the local wind conditions of Tainan, Taiwan. The wind energy potential was first determined through the Weibull wind speed distribution and then was adapted to the design of the turbine blade. Two numerical approaches were adopted in the design and analysis of the HAWT turbine blades. The blade element momentum theory (BEMT) was used to lay out the shape of the turbine blades (S822 and S823 airfoils). The geometry of the root region of the turbine blade was then modified to facilitate integration with a pitch control system. A mathematical model for the prediction of aerodynamic performance of the S822 and S823 airfoils, in which the lift and drag coefficients are calculated using BEMT equations, was then developed. Finally, computational fluid dynamics (CFD) was used to examine the aerodynamic characteristics of the resulting turbine blades. The resulting aerodynamic performance curves obtained from CFD simulation are in agreement with those obtained using BEMT. It is also observed that separation flow occurred at the turbine blade root at the tip speed ratios of 5 and 7.

Original languageEnglish
Pages (from-to)1151-1166
Number of pages16
JournalClean Technologies and Environmental Policy
Issue number4
Publication statusPublished - 2016 Apr 1

All Science Journal Classification (ASJC) codes

  • Environmental Engineering
  • Environmental Chemistry
  • Management, Monitoring, Policy and Law


Dive into the research topics of 'Aerodynamic design and analysis of a 10 kW horizontal-axis wind turbine for Tainan, Taiwan'. Together they form a unique fingerprint.

Cite this