Aerosol deposition and airflow dynamics in healthy and asthmatic human airways during inhalation

Wei Hsin Chen, Che Ming Chang, Justus Kavita Mutuku, Su Shiung Lam, Wen Jhy Lee

Research output: Contribution to journalArticlepeer-review

Abstract

Inhalation of aerosols such as pharmaceutical aerosols or virus aerosol uptake is of great concern to the human population. To elucidate the underlying aerosol dynamics, the deposition fractions (DFs) of aerosols in healthy and asthmatic human airways of generations 13–15 are predicted. The Navier-stokes equations governing the gaseous phase and the discrete phase model for particles’ motion are solved using numerical methods. The main forces responsible for deposition are inertial impaction forces and complex secondary flow velocities. The curvatures and sinusoidal folds in the asthmatic geometry lead to the formation of complex secondary flows and hence higher DFs. The intensities of complex secondary flows are strongest at the generations affected by asthma. The DF in the healthy airways is 0%, and it ranges from 1.69% to 52.93% in the asthmatic ones. From this study, the effects of the pharmaceutical aerosol particle diameters in the treatment of asthma patients can be established, which is conducive to inhibiting the inflammation of asthma airways. Furthermore, with the recent development of COVID-19 which causes pneumonia, the predicted physics and effective simulation methods of bioaerosols delivery to asthma patients are vital to prevent the exacerbation of the chronic ailment and the epidemic.

Original languageEnglish
Article number125856
JournalJournal of Hazardous Materials
Volume416
DOIs
Publication statusPublished - 2021 Aug 15

All Science Journal Classification (ASJC) codes

  • Environmental Engineering
  • Environmental Chemistry
  • Waste Management and Disposal
  • Pollution
  • Health, Toxicology and Mutagenesis

Fingerprint

Dive into the research topics of 'Aerosol deposition and airflow dynamics in healthy and asthmatic human airways during inhalation'. Together they form a unique fingerprint.

Cite this