Alkali-created rich properties in grapheme nanoribbons: Chemical bondings

Yu Tsung Lin, Shih Yang Lin, Yu Huang Chiu, Ming Fa Lin

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

The alkali-adsorbed graphene nanoribbons exhibit the feature-rich electronic and magnetic properties. From the first-principles calculations, there are only few adatom-dominated conduction bands, and the other conduction and valence bands are caused by carbon atoms. A lot of free electrons are revealed in the occupied alkali- and carbon-dependent conduction bands. Energy bands are sensitive to the concentration, distribution and kind of adatom and the edge structure, while the total linear free carrier density only relies on the first one. These mainly arise from a single s - 2p z orbital hybridization in the adatom-carbon bond. Specifically, zigzag systems can present the anti-ferromagnetic ordering across two edges, ferromagnetic ordering along one edge and non-magnetism, being reflected in the edge-localized energy bands with or without spin splitting. The diverse energy dispersions contribute many special peaks in density of states. The critical chemical bonding and the distinct spin configuration could be verified from the experimental measurements.

Original languageEnglish
Article number1722
JournalScientific reports
Volume7
Issue number1
DOIs
Publication statusPublished - 2017 Dec 1

All Science Journal Classification (ASJC) codes

  • General

Fingerprint Dive into the research topics of 'Alkali-created rich properties in grapheme nanoribbons: Chemical bondings'. Together they form a unique fingerprint.

  • Cite this