TY - GEN
T1 - Aluminum-Ice (ALICE) propellants for hydrogen generation and propulsion
AU - Risha, Grant A.
AU - Connell, Terrence L.
AU - Yetter, Richard A.
AU - Yang, Vigor
AU - Wood, Tyler D.
AU - Pfeil, Mark A.
AU - Pourpoint, Timothee L.
AU - Son, Steven F.
N1 - Copyright:
Copyright 2010 Elsevier B.V., All rights reserved.
PY - 2009
Y1 - 2009
N2 - An experimental investigation was conducted to determine the relative propulsive performance and viability of novel solid propellants comprised of ALICE using fundamental techniques such as steady-state strand experiments and applied experimentation such as lab-scale static fire rocket tests. Burning rates, slag accumulation, thrust, and pressure are some of the experimental parameters obtained. System scaling has been performed to examine the effect of larger systems on slag accumulation and performance parameters. The effect of pressure on the linear burning rate was examined and correlated using a Saint Roberts's law fit. The pressure exponent for ALICE was 0.73, which is approximately a factor of two larger than Al/water mixtures. Three sizes rocket motors ranging from internal diameters of 0.75 to 3-in. Nozzle throat diameter and igniter strength were varied. It was found that ALICE propellants successfully ignited and combusted in each lab-scale rocket motor, generating thrust levels above 223 lbf for expansion ratios of 10 and center-perforated grain configurations (3-in length). For the 3-in motor, combustion efficiency was around 70%, while the specific impulse efficiency was 64%.
AB - An experimental investigation was conducted to determine the relative propulsive performance and viability of novel solid propellants comprised of ALICE using fundamental techniques such as steady-state strand experiments and applied experimentation such as lab-scale static fire rocket tests. Burning rates, slag accumulation, thrust, and pressure are some of the experimental parameters obtained. System scaling has been performed to examine the effect of larger systems on slag accumulation and performance parameters. The effect of pressure on the linear burning rate was examined and correlated using a Saint Roberts's law fit. The pressure exponent for ALICE was 0.73, which is approximately a factor of two larger than Al/water mixtures. Three sizes rocket motors ranging from internal diameters of 0.75 to 3-in. Nozzle throat diameter and igniter strength were varied. It was found that ALICE propellants successfully ignited and combusted in each lab-scale rocket motor, generating thrust levels above 223 lbf for expansion ratios of 10 and center-perforated grain configurations (3-in length). For the 3-in motor, combustion efficiency was around 70%, while the specific impulse efficiency was 64%.
UR - http://www.scopus.com/inward/record.url?scp=77957847871&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77957847871&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:77957847871
SN - 9781563479762
T3 - 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit
BT - 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit
T2 - 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit
Y2 - 2 August 2009 through 5 August 2009
ER -