An analysis of extinction coefficients of particles and water moisture in the stack after flue gas desulfurization at a coal-fired power plant

Wen Fu Tu, Jenn Der Lin, Yee Lin Wu

Research output: Contribution to journalArticle

4 Citations (Scopus)

Abstract

Two important factors that affect in-stack opacity-light extinction by emitted particles and that by water moisture after a flue gas desulfurization (FGD) unit-are investigated. The mass light extinction coefficients for particles and water moisture, kp and kw, respectively, were determined using the Lambert-Beer law of opacity with a nonlinear least-squares regression method. The estimated kp and kw values vary from 0.199 to 0.316 m2/g and 0.000345 to 0.000426 m2/g, respectively, and the overall mean estimated values are 0.229 and 0.000397 m2/g, respectively. Although kw is 3 orders of magnitude smaller than kp, experimental results show that the effect on light extinction by water moisture was comparable to that by particles because of the existence of a considerable mass of water moisture after a FGD unit. The mass light extinction coefficient was also estimated using Mie theory with measured particle size distributions and a complex refractive index of 1.5-ni for fly ash particles. The kp obtained using Mie theory ranges from 0.282 to 0.286 m2/g and is slightly greater than the averaged estimated kp of 0.229 m2/g from measured opacity. The discrepancy may be partly due to a difference in the microstructure of the fly ash from the assumption of solid spheres because the fly ash may have been formed as spheres attached with smaller particles or as hollow spheres that contained solid spheres. Previously reported values of measured kp obtained without considering the effects of water moisture are greater than that obtained in this study, which is reasonable because it reflects the effect of extinction by water moisture in the flue gas. Additionally, the moisture absorbed by particulate matter, corresponding to the effect of water moisture on the particulates, was clarified and found to be negligible.

Original languageEnglish
Pages (from-to)815-825
Number of pages11
JournalJournal of the Air and Waste Management Association
Volume61
Issue number8
DOIs
Publication statusPublished - 2011 Aug

Fingerprint

extinction coefficient
coal-fired power plant
moisture
fly ash
Mie theory
water
extinction
stack
analysis
flue gas
particle
refractive index
particulate matter
microstructure
effect

All Science Journal Classification (ASJC) codes

  • Waste Management and Disposal
  • Management, Monitoring, Policy and Law

Cite this

@article{0f0f87356f1e494d9a2c8783bfd7c28c,
title = "An analysis of extinction coefficients of particles and water moisture in the stack after flue gas desulfurization at a coal-fired power plant",
abstract = "Two important factors that affect in-stack opacity-light extinction by emitted particles and that by water moisture after a flue gas desulfurization (FGD) unit-are investigated. The mass light extinction coefficients for particles and water moisture, kp and kw, respectively, were determined using the Lambert-Beer law of opacity with a nonlinear least-squares regression method. The estimated kp and kw values vary from 0.199 to 0.316 m2/g and 0.000345 to 0.000426 m2/g, respectively, and the overall mean estimated values are 0.229 and 0.000397 m2/g, respectively. Although kw is 3 orders of magnitude smaller than kp, experimental results show that the effect on light extinction by water moisture was comparable to that by particles because of the existence of a considerable mass of water moisture after a FGD unit. The mass light extinction coefficient was also estimated using Mie theory with measured particle size distributions and a complex refractive index of 1.5-ni for fly ash particles. The kp obtained using Mie theory ranges from 0.282 to 0.286 m2/g and is slightly greater than the averaged estimated kp of 0.229 m2/g from measured opacity. The discrepancy may be partly due to a difference in the microstructure of the fly ash from the assumption of solid spheres because the fly ash may have been formed as spheres attached with smaller particles or as hollow spheres that contained solid spheres. Previously reported values of measured kp obtained without considering the effects of water moisture are greater than that obtained in this study, which is reasonable because it reflects the effect of extinction by water moisture in the flue gas. Additionally, the moisture absorbed by particulate matter, corresponding to the effect of water moisture on the particulates, was clarified and found to be negligible.",
author = "Tu, {Wen Fu} and Lin, {Jenn Der} and Wu, {Yee Lin}",
year = "2011",
month = "8",
doi = "10.3155/1047-3289.61.8.815",
language = "English",
volume = "61",
pages = "815--825",
journal = "Journal of the Air and Waste Management Association",
issn = "1096-2247",
publisher = "Air and Waste Management Association",
number = "8",

}

TY - JOUR

T1 - An analysis of extinction coefficients of particles and water moisture in the stack after flue gas desulfurization at a coal-fired power plant

AU - Tu, Wen Fu

AU - Lin, Jenn Der

AU - Wu, Yee Lin

PY - 2011/8

Y1 - 2011/8

N2 - Two important factors that affect in-stack opacity-light extinction by emitted particles and that by water moisture after a flue gas desulfurization (FGD) unit-are investigated. The mass light extinction coefficients for particles and water moisture, kp and kw, respectively, were determined using the Lambert-Beer law of opacity with a nonlinear least-squares regression method. The estimated kp and kw values vary from 0.199 to 0.316 m2/g and 0.000345 to 0.000426 m2/g, respectively, and the overall mean estimated values are 0.229 and 0.000397 m2/g, respectively. Although kw is 3 orders of magnitude smaller than kp, experimental results show that the effect on light extinction by water moisture was comparable to that by particles because of the existence of a considerable mass of water moisture after a FGD unit. The mass light extinction coefficient was also estimated using Mie theory with measured particle size distributions and a complex refractive index of 1.5-ni for fly ash particles. The kp obtained using Mie theory ranges from 0.282 to 0.286 m2/g and is slightly greater than the averaged estimated kp of 0.229 m2/g from measured opacity. The discrepancy may be partly due to a difference in the microstructure of the fly ash from the assumption of solid spheres because the fly ash may have been formed as spheres attached with smaller particles or as hollow spheres that contained solid spheres. Previously reported values of measured kp obtained without considering the effects of water moisture are greater than that obtained in this study, which is reasonable because it reflects the effect of extinction by water moisture in the flue gas. Additionally, the moisture absorbed by particulate matter, corresponding to the effect of water moisture on the particulates, was clarified and found to be negligible.

AB - Two important factors that affect in-stack opacity-light extinction by emitted particles and that by water moisture after a flue gas desulfurization (FGD) unit-are investigated. The mass light extinction coefficients for particles and water moisture, kp and kw, respectively, were determined using the Lambert-Beer law of opacity with a nonlinear least-squares regression method. The estimated kp and kw values vary from 0.199 to 0.316 m2/g and 0.000345 to 0.000426 m2/g, respectively, and the overall mean estimated values are 0.229 and 0.000397 m2/g, respectively. Although kw is 3 orders of magnitude smaller than kp, experimental results show that the effect on light extinction by water moisture was comparable to that by particles because of the existence of a considerable mass of water moisture after a FGD unit. The mass light extinction coefficient was also estimated using Mie theory with measured particle size distributions and a complex refractive index of 1.5-ni for fly ash particles. The kp obtained using Mie theory ranges from 0.282 to 0.286 m2/g and is slightly greater than the averaged estimated kp of 0.229 m2/g from measured opacity. The discrepancy may be partly due to a difference in the microstructure of the fly ash from the assumption of solid spheres because the fly ash may have been formed as spheres attached with smaller particles or as hollow spheres that contained solid spheres. Previously reported values of measured kp obtained without considering the effects of water moisture are greater than that obtained in this study, which is reasonable because it reflects the effect of extinction by water moisture in the flue gas. Additionally, the moisture absorbed by particulate matter, corresponding to the effect of water moisture on the particulates, was clarified and found to be negligible.

UR - http://www.scopus.com/inward/record.url?scp=80051731843&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=80051731843&partnerID=8YFLogxK

U2 - 10.3155/1047-3289.61.8.815

DO - 10.3155/1047-3289.61.8.815

M3 - Article

C2 - 21874952

AN - SCOPUS:80051731843

VL - 61

SP - 815

EP - 825

JO - Journal of the Air and Waste Management Association

JF - Journal of the Air and Waste Management Association

SN - 1096-2247

IS - 8

ER -