An efficient low frequency horizontal diamagnetic levitation mechanism based vibration energy harvester

S. Palagummi, F. G. Yuan

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Citations (Scopus)

Abstract

This article identifies and studies key parameters that characterize a horizontal diamagnetic levitation (HDL) mechanism based low frequency vibration energy harvester with the aim of enhancing performance metrics such as efficiency and volume figure of merit (FoM v ). The HDL mechanism comprises of three permanent magnets and two diamagnetic plates. Two of the magnets, aka lifting magnets, are placed co-axially at a distance such that each attract a centrally located magnet, aka floating magnet, to balance its weight. This floating magnet is flanked closely by two diamagnetic plates which stabilize the levitation in the axial direction. The influence of the geometry of the floating magnet, the lifting magnet and the diamagnetic plate are parametrically studied to quantify their effects on the size, stability of the levitation mechanism and the resonant frequency of the floating magnet. For vibration energy harvesting using the HDL mechanism, a coil geometry and eddy current damping are critically discussed. Based on the analysis, an efficient experimental system is setup which showed a softening frequency response with an average system efficiency of 25.8 % and a FoM v of 0.23 % when excited at a root mean square acceleration of 0.0546 m/s2 and at frequency of 1.9 Hz.

Original languageEnglish
Title of host publicationActive and Passive Smart Structures and Integrated Systems 2016
EditorsGyuhae Park
PublisherSPIE
ISBN (Electronic)9781510600409
DOIs
Publication statusPublished - 2016
EventActive and Passive Smart Structures and Integrated Systems 2016 - Las Vegas, United States
Duration: 2016 Mar 212016 Mar 24

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume9799
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X

Conference

ConferenceActive and Passive Smart Structures and Integrated Systems 2016
Country/TerritoryUnited States
CityLas Vegas
Period16-03-2116-03-24

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'An efficient low frequency horizontal diamagnetic levitation mechanism based vibration energy harvester'. Together they form a unique fingerprint.

Cite this